Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 199: 105765, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458674

RESUMO

The detoxification of insecticides in insects is dependent on the expression and activity of multiple detoxification enzymes. As an important modulator of detoxification enzymes, the CncC-Keap1 pathway was involved in the detoxification of various pesticides. However, whether the CncC-Keap1 pathway is involved in the detoxification of emamectin benzoate (EMB) is unclear. In this study, we cloned the LdCncC and LdKeap1 from spongy moths (Lymantria dispar). Our results showed that EMB exposure induced oxidative stress, and activated the CncC-Keap1 pathway at mRNA and protein levels. Removing ROS by N-acetylcysteine remarkably decreased H2O2 levels and restored the expression of LdCncC and LdKeap1. The silencing LdCncC, not LdKeap1, by dsRNA significantly decreased the cytochrome P450 activities, and increased the sensitivity of larvae to EMB. Besides, the expression of CYP6B7v1, CYP321A7 and CYP4S4v1 were significantly decreased after silencing LdCncC. Notably, the knockdown of CYP6B7v1, CYP321A7 or CYP4S4v1 significantly increased the mortality induced by EMB exposure. Therefore, we proposed that activation of CncC-Keap1 pathway induced by ROS increased the detoxification of EMB in spongy moths by regulating the expression of CYP6B7v1, CYP321A7 and CYP4S4v1. Our study strengthened the understanding of the detoxification of EMB from the perspective of CncC-Keap1-P450s pathway.


Assuntos
Complexo de Mariposas do Gênero Lymantria , Ivermectina/análogos & derivados , Mariposas , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Mariposas/genética , Mariposas/metabolismo
2.
Sci Data ; 10(1): 898, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092795

RESUMO

The Asian spongy moth, Lymantria dispar asiatica, is one of the most devastating forestry defoliators. The absence of a high-quality genome limited the understanding of its adaptive evolution. Here, we conducted the first chromosome-level genome assembly of L. dispar asiatica using PacBio HIFI long reads, Hi-C sequencing reads and transcriptomic data. The total assembly size is 997.59 Mb, containing 32 chromosomes with a GC content of 38.91% and a scaffold N50 length of 35.42 Mb. The BUSCO assessment indicated a completeness estimate of 99.4% for this assembly. A total of 19,532 protein-coding genes was predicted. Our study provides a valuable genomics resource for studying the mechanisms of adaptive evolution and facilitate an efficient control of L. dispar asiatica.


Assuntos
Complexo de Mariposas do Gênero Lymantria , Genoma de Inseto , Mariposas , Animais , Cromossomos , Mariposas/genética , Filogenia , Transcriptoma
3.
Pestic Biochem Physiol ; 194: 105527, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532336

RESUMO

Bursaphelenchus xylophilus (Pine wood nematode, PWN) has become a worldwide forest disease due to its rapid infection ability, high lethality and difficulty in control. The main means of countering B. xylophilus is currently chemical control, but nematicides can present problems such as environmental pollution and drug resistance. The development of novel environmentally-friendly nematicides has thus become a focus of recent research. In this study, BxUGT3 and BxUGT34, which might be related to detoxification, were investigated by comparing transcriptomic and WGCNA approaches. Three other genes with a similar expression pattern, BxUGT13, BxUGT14, and BxUGT16, were found by gene family analysis. Further bioassays and qPCR assays confirmed that these five genes showed significant changes in transcript levels upon exposure to α-pinene and carvone, demonstrating that they respond to exogenous nematicidal substances. Finally, RNAi and bioassays showed that B. xylophilus with silenced BxUGT16 had increased mortality in the face of α-pinene and carvone stress, suggesting that BxUGT16 plays an important role in detoxification. Taken together, this study used novel molecular research methods, explored the detoxification mechanism of B. xylophilus at a transcriptomic level, and revealed a molecular target for the development of novel biopesticides.


Assuntos
Transcriptoma , Tylenchida , Animais , Xylophilus , Antinematódeos/farmacologia , Tylenchida/genética , Doenças das Plantas
4.
Pest Manag Sci ; 78(11): 4628-4637, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35861673

RESUMO

BACKGROUND: Emamectin benzoate (EMB) is a semisynthetic bioinsecticide, which has been widely used in the control of forestry and agricultural pests. However, the mechanism of its toxic effects on the non-neural tissues has been rarely reported. Here, we explored the mechanism of the midgut damage induced by EMB in gypsy moth (Lymantria dispar) in order to better understand the toxicological mechanism of EMB. RESULTS: Our results confirmed that EMB caused damage to the midgut of gypsy moth by inducing apoptosis. Transcriptome showed that 1469, 650 and 950 genes were significantly differentially expressed in the midgut of gypsy moth after 24, 48 and 72 h of EMB exposure, and oxidative stress, energy metabolism disorder and apoptosis may be related to the toxic effects of EMB. The indicators related to oxidative stress, energy metabolism and apoptosis were further examined. The results showed that EMB could cause oxidative stress by increasing ROS level and inhibiting antioxidant enzymes (P < 0.05), such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), which in turn causes mitochondria injury. Subsequently, energy metabolism was inhibited by downregulating the activities and mRNA level of energy metabolism enzymes. Furthermore, the mitochondrial apoptosis pathway was activated, triggering apoptosis, and eventually causing midgut injury in gypsy moth. CONCLUSION: Our results indicated that EMB caused damage to midgut by inducing oxidative stress, energy metabolism disorder and apoptosis in gypsy moth. Our findings shed new light on the toxicological mechanism of EMB on non-neural tissues from oxidative stress, energy metabolism and apoptosis perspectives. © 2022 Society of Chemical Industry.


Assuntos
Antioxidantes , Mariposas , Animais , Apoptose , Catalase/farmacologia , Metabolismo Energético , Perfilação da Expressão Gênica , Glutationa Peroxidase/farmacologia , Ivermectina/análogos & derivados , Mariposas/genética , Estresse Oxidativo , RNA Mensageiro , Espécies Reativas de Oxigênio , Superóxido Dismutase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA