Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1225445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560030

RESUMO

Early season flooding is a major constraint in direct-seeded rice, as rice genotypes vary in their coleoptile length during anoxia. Trehalose-6-phosphate phosphatase 7 (OsTPP7, Os09g0369400) has been identified as the genetic determinant for anaerobic germination (AG) and coleoptile elongation during flooding. We evaluated the coleoptile length of a diverse rice panel under normal and flooded conditions and investigated the Korean rice collection of 475 accessions to understand its genetic variation, population genetics, evolutionary relationships, and haplotypes in the OsTPP7 gene. Most accessions displayed enhanced flooded coleoptile lengths, with the temperate japonica ecotype exhibiting the highest average values for normal and flooded conditions. Positive Tajima's D values in indica, admixture, and tropical japonica ecotypes suggested balancing selection or population expansion. Haplotype analysis revealed 18 haplotypes, with three in cultivated accessions, 13 in the wild type, and two in both. Hap_1 was found mostly in japonica, while Hap-2 and Hap_3 were more prevalent in indica accessions. Further phenotypic performance of major haplotypes showed significant differences in flooded coleoptile length, flooding tolerance index, and shoot length between Hap_1 and Hap_2/3. These findings could be valuable for future selective rice breeding and the development of efficient haplotype-based breeding strategies for improving flood tolerance.

2.
Microbiol Resour Announc ; 12(9): e0026523, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37477445

RESUMO

The complete genome sequence of strain NIBR10 was sequenced using PacBio RS II (Pacific Biosciences) sequencing platform. The 4,006,378-bp genome has a G + C content of 66.89% and around 3,832 coding sequences. Genomic data will provide valuable research for natural taxonomy and comparative genomics of the genus Brevundimonas.

3.
J Adv Res ; 42: 303-314, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513420

RESUMO

INTRODUCTION: Fragrance is an important economic and quality trait in rice. The trait is controlled by the recessive gene betaine aldehyde dehydrogenase 2 (BADH2) via the production of 2-acetyl-1-pyrroline (2AP). OBJECTIVES: Variation in BADH2 was evaluated at the population, genetic, transcriptional, and metabolic levels to obtain insights into fragrance regulation in rice. METHODS: Whole-genome resequencing of the Korean World Rice Collection of 475 rice accessions, including 421 breeding lines and 54 wild accessions, was performed. Transcriptome analyses of a subset of 279 accessions, proteome analyses of 64 accessions, and volatile profiling of 421 breeding lines were also performed. RESULTS: We identified over 3.1 million high-quality single nucleotide polymorphisms (SNPs) in Korean rice collection. Most SNPs were present in intergenic regions (79%), and 190,148 SNPs (6%) were located in the coding sequence, of which 53% were nonsynonymous. In total, 38 haplotypes were identified in the BADH2 coding region, including four novel haplotypes (one in cultivated and three in wild accessions). Tajima's D values suggested that BADH2 was under balancing selection in japonica rice. Furthermore, we identified 316 expression quantitative trait loci (eQTL), including 185 cis-eQTLs and 131 trans-eQTLs, involved in BADH2 regulation. A protein quantitative trait loci (pQTL) analysis revealed the presence of trans-pQTLs; 13 pQTLs were mapped 1 Mbp from the BADH2 region. Based on variable importance in projection (VIP) scores, 15 volatile compounds, including 2AP, discriminated haplotypes and were potential biomarkers for rice fragrance. CONCLUSION: We generated a catalog of haplotypes based on a resequencing analysis of a large number of rice accessions. eQTLs and pQTLs associated with BADH2 gene expression and protein accumulation are likely involved in the regulation of 2AP variation in fragrant rice. These data improve our understanding of fragrance and provide valuable information for rice breeding.


Assuntos
Oryza , Perfumes , Betaína-Aldeído Desidrogenase/genética , Betaína-Aldeído Desidrogenase/metabolismo , Oryza/genética , Oryza/metabolismo , Odorantes , Multiômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Perfumes/metabolismo
4.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299195

RESUMO

Betaine aldehyde dehydrogenase 1 (BADH1), a paralog of the fragrance gene BADH2, is known to be associated with salt stress through the accumulation of synthesized glycine betaine (GB), which is involved in the response to abiotic stresses. Despite the unclear association between BADH1 and salt stress, we observed the responses of eight phenotypic characteristics (germination percentage (GP), germination energy (GE), germination index (GI), mean germination time (MGT), germination rate (GR), shoot length (SL), root length (RL), and total dry weight (TDW)) to salt stress during the germination stage of 475 rice accessions to investigate their association with BADH1 haplotypes. We found a total of 116 SNPs and 77 InDels in the whole BADH1 gene region, representing 39 haplotypes. Twenty-nine haplotypes representing 27 mutated alleles (two InDels and 25 SNPs) were highly (p < 0.05) associated with salt stress, including the five SNPs that have been previously reported to be associated with salt tolerance. We observed three predominant haplotypes associated with salt tolerance, Hap_2, Hap_18, and Hap_23, which were Indica specific, indicating a comparatively high number of rice accessions among the associated haplotypes. Eight plant parameters (phenotypes) also showed clear responses to salt stress, and except for MGT (mean germination time), all were positively correlated with each other. Different signatures of domestication for BADH1 were detected in cultivated rice by identifying the highest and lowest Tajima's D values of two major cultivated ecotypes (Temperate Japonica and Indica). Our findings on these significant associations and BADH1 evolution to plant traits can be useful for future research development related to its gene expression.


Assuntos
Betaína-Aldeído Desidrogenase/metabolismo , Betaína/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Betaína-Aldeído Desidrogenase/genética , Genes de Plantas , Germinação , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico
5.
Rice (N Y) ; 12(1): 65, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31414311

RESUMO

BACKGROUND: The domestication process of Asian rice (Oryza sativa L.) is complicated. It's well established that Oryza rufipogon is the ancestor of Asian rice, although the number of domestication events still controversial. Recently, numerous types of studies based on rice nuclear genome have been conducted, but the results are quite different. Chloroplasts (cp) are also part of the rice genome and have a conserved cyclic structure that is valuable for plant genetics and evolutionary studies. Therefore, we conducted chloroplast-based studies, aiming to provide more evidence for the domestication of Asian rice. RESULTS: A total of 1389 variants were detected from the chloroplast genomes of 412 accessions obtained through the world. Oryza sativa L. ssp. japonica exhibited slightly less diversity (π) than Oryza sativa L. indica and wild rice. The fixation index values (FST) revealed that indica and japonica exhibited farther genetic distances compared with wild rice. Across cp genome, Tajima's D test demonstrated that different selection sites occurred in Asian rice. Principal component analyses (PCA) and multidimensional scaling (MDS) clearly classify the Asian rice into different groups. Furthermore, introgression patterns identified that indica and japonica shared no introgression events in cp level, and phylogenetic studies showed cultivated rice were well separated from different type of wild rice. CONCLUSIONS: Here, we focus on the domestication of Asian rice (indica and japonica). Diversity and phylogenetic analyses revealed some selection characteristics in the chloroplast genome that potentially occurred in different Asian rice during the domestication. The results shown that Asian rice had been domesticated at least twice. In additional, japonica may experience a strong positive selection or bottleneck event during the domestication.

6.
Genes Genomics ; 41(9): 1085-1093, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31197567

RESUMO

BACKGROUND: At least eight structurally related forms of vitamin E occur in nature, four tocopherols and four tocotrienols, all of which are potent membrane-soluble antioxidants. In this study, we detected two major isoforms in sesame (Sesamum indicum L.) seed: γ-tocopherol and ß-tocotrienol. The objective of this study is to investigate the genetic basis of these vitamin E isoforms. METHODS: We  conducted a genome-wide association study (GWAS) using 5962 genome-wide markers, acquired from 96 core sesame accessions. The GWAS was performed using generalized linear (GLM) and mixed linear (MLM) models. RESULTS: LG08_6621957, on chromosome 8, was detected as having a significant association with γ-tocopherol in both models. It explained 20.9% of γ-tocopherol variation in sesame. For ß-tocotrienol, no significant loci were detected according to the two models, but one locus, SLG03_13104062, explained 17.8% of the phenotypic variation. Based on structure and phylogenetic studies, the 96 accessions were clearly clustered into two subpopulations. CONCLUSION: This study on sesame demonstrates and provides an evidence that genotyping by sequencing (GBS) based GWAS can be used to identifying important loci for small growing crops. The significant SNPs or genes could be useful for improving the vitamin E content in sesame breeding programs.


Assuntos
Polimorfismo de Nucleotídeo Único , Sesamum/genética , Vitamina E/genética , Genes de Plantas , Estudo de Associação Genômica Ampla/métodos , Técnicas de Genotipagem/métodos , Locos de Características Quantitativas , Sesamum/metabolismo , Vitamina E/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA