Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(17): eadl0164, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657076

RESUMO

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus providing defense from the phages. In addition, Cas13a-mediated tRNA cleavage indirectly activates the RNases of bacterial toxin-antitoxin modules cleaving messenger RNA, which could provide a backup defense. The mechanism of Cas13a-induced antiphage defense resembles that of bacterial anticodon nucleases, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module encompassing an anticodon nuclease.


Assuntos
Anticódon , Sistemas CRISPR-Cas , Escherichia coli , RNA de Transferência , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leptotrichia/genética , Leptotrichia/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Bacteriófagos/genética , Clivagem do RNA
2.
Nat Commun ; 15(1): 2862, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580648

RESUMO

The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.


Assuntos
Proteína BRCA1 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína BRCA1/genética , Proteína BRCA2/genética , DNA/metabolismo , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos
3.
Nat Commun ; 15(1): 317, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182597

RESUMO

Thermus thermophilus bacteriophage P23-45 encodes a giant 5,002-residue tail tape measure protein (TMP) that defines the length of its extraordinarily long tail. Here, we show that the N-terminal portion of P23-45 TMP is an unusual RNA polymerase (RNAP) homologous to cellular RNAPs. The TMP-fused virion RNAP transcribes pre-early phage genes, including a gene that encodes another, non-virion RNAP, that transcribes early and some middle phage genes. We report the crystal structures of both P23-45 RNAPs. The non-virion RNAP has a crab-claw-like architecture. By contrast, the virion RNAP adopts a unique flat structure without a clamp. Structure and sequence comparisons of the P23-45 RNAPs with other RNAPs suggest that, despite the extensive functional differences, the two P23-45 RNAPs originate from an ancient gene duplication in an ancestral phage. Our findings demonstrate striking adaptability of RNAPs that can be attained within a single virus species.


Assuntos
Bacteriófagos , Piridinolcarbamato , Vírion/genética , Bacteriófagos/genética , Técnicas de Tipagem Bacteriana , RNA Polimerases Dirigidas por DNA/genética
4.
RNA ; 29(8): 1288-1300, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37105714

RESUMO

Synthetic RNA oligonucleotides composed of canonical and modified ribonucleotides are highly effective for RNA antisense therapeutics and RNA-based genome engineering applications utilizing CRISPR-Cas9. Yet, synthesis of synthetic RNA using phosphoramidite chemistry is highly inefficient and expensive relative to DNA oligonucleotides, especially for relatively long RNA oligonucleotides. Thus, new biotechnologies are needed to significantly reduce costs, while increasing synthesis rates and yields of synthetic RNA. Here, we engineer human DNA polymerase theta (Polθ) variants and demonstrate their ability to synthesize long (95-200 nt) RNA oligonucleotides with canonical ribonucleotides and ribonucleotide analogs commonly used for stabilizing RNA for therapeutic and genome engineering applications. In contrast to natural promoter-dependent RNA polymerases, Polθ variants synthesize RNA by initiating from DNA or RNA primers, which enables the production of RNA without short abortive byproducts. Remarkably, Polθ variants show the lower capacity to misincorporate ribonucleotides compared to T7 RNA polymerase. Automation of this enzymatic RNA synthesis technology can potentially increase yields while reducing costs of synthetic RNA oligonucleotide production.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA , Humanos , RNA/genética , RNA Polimerases Dirigidas por DNA/genética , DNA/genética , Ribonucleotídeos/genética , Oligonucleotídeos , DNA Polimerase teta
5.
Nature ; 589(7841): 306-309, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208949

RESUMO

CrAss-like phages are a recently described expansive group of viruses that includes the most abundant virus in the human gut1-3. The genomes of all crAss-like phages encode a large virion-packaged protein2,4 that contains a DFDxD sequence motif, which forms the catalytic site in cellular multisubunit RNA polymerases (RNAPs)5. Here, using Cellulophaga baltica crAss-like phage phi14:2 as a model system, we show that this protein is a DNA-dependent RNAP that is translocated into the host cell along with the phage DNA and transcribes early phage genes. We determined the crystal structure of this 2,180-residue enzyme in a self-inhibited state, which probably occurs before virion packaging. This conformation is attained with the help of a cleft-blocking domain that interacts with the active site and occupies the cavity in which the RNA-DNA hybrid binds. Structurally, phi14:2 RNAP is most similar to eukaryotic RNAPs that are involved in RNA interference6,7, although most of the phi14:2 RNAP structure (nearly 1,600 residues) maps to a new region of the protein fold space. Considering this structural similarity, we propose that eukaryal RNA interference polymerases have their origins in phage, which parallels the emergence of the mitochondrial transcription apparatus8.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/enzimologia , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Flavobacteriaceae/virologia , Bacteriófagos/genética , Domínio Catalítico , Sistema Livre de Células , Cristalografia por Raios X , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/genética , RNA Polimerases Dirigidas por DNA/genética , Evolução Molecular , Regulação Viral da Expressão Gênica , Genes Virais/genética , Modelos Biológicos , Modelos Moleculares , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Interferência de RNA , Transcrição Gênica
6.
Proc Natl Acad Sci U S A ; 116(9): 3556-3561, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30737287

RESUMO

Double-stranded DNA viruses, including bacteriophages and herpesviruses, package their genomes into preformed capsids, using ATP-driven motors. Seeking to advance structural and mechanistic understanding, we established in vitro packaging for a thermostable bacteriophage, P23-45 of Thermus thermophilus Both the unexpanded procapsid and the expanded mature capsid can package DNA in the presence of packaging ATPase over the 20 °C to 70 °C temperature range, with optimum activity at 50 °C to 65 °C. Cryo-EM reconstructions for the mature and immature capsids at 3.7-Å and 4.4-Å resolution, respectively, reveal conformational changes during capsid expansion. Capsomer interactions in the expanded capsid are reinforced by formation of intersubunit ß-sheets with N-terminal segments of auxiliary protein trimers. Unexpectedly, the capsid has T=7 quasi-symmetry, despite the P23-45 genome being twice as large as those of known T=7 phages, in which the DNA is compacted to near-crystalline density. Our data explain this anomaly, showing how the canonical HK97 fold has adapted to double the volume of the capsid, while maintaining its structural integrity. Reconstructions of the procapsid and the expanded capsid defined the structure of the single vertex containing the portal protein. Together with a 1.95-Å resolution crystal structure of the portal protein and DNA packaging assays, these reconstructions indicate that capsid expansion affects the conformation of the portal protein, while still allowing DNA to be packaged. These observations suggest a mechanism by which structural events inside the capsid can be communicated to the outside.


Assuntos
Bacteriófagos/ultraestrutura , Capsídeo/ultraestrutura , Empacotamento do DNA/genética , Vírus de DNA/ultraestrutura , Bacteriófagos/genética , Microscopia Crioeletrônica , Vírus de DNA/genética , DNA Viral/genética , DNA Viral/ultraestrutura , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus/genética
7.
Methods Enzymol ; 616: 337-363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30691650

RESUMO

CRISPR-Cas systems protect prokaryotic cells from invading phages and plasmids by recognizing and cleaving foreign nucleic acid sequences specified by CRISPR RNA spacer sequences. Several CRISPR-Cas systems have been widely used as tool for genetic engineering. In DNA-targeting CRISPR-Cas nucleoprotein effector complexes, the CRISPR RNA forms a hybrid with the complementary strand of foreign DNA, displacing the noncomplementary strand to form an R-loop. The DNA interrogation and R-loop formation involve several distinct steps the molecular details of which are not fully understood. This chapter describes a recently developed fluorometric Cas beacon assay that may be used for measuring of specific affinity of various CRISPR-Cas complexes for unlabeled target DNA and model DNA probes. The Cas beacon approach also can provide a sensitive method for monitoring the kinetics of assembly of CRISPR-Cas complexes.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , Sondas de DNA/metabolismo , Fluorometria/métodos , RNA Guia de Cinetoplastídeos/metabolismo
8.
RNA Biol ; 16(4): 413-422, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30022698

RESUMO

Target binding by CRISPR-Cas ribonucleoprotein effectors is initiated by the recognition of double-stranded PAM motifs by the Cas protein moiety followed by destabilization, localized melting, and interrogation of the target by the guide part of CRISPR RNA moiety. The latter process depends on seed sequences, parts of the target that must be strictly complementary to CRISPR RNA guide. Mismatches between the target and CRISPR RNA guide outside the seed have minor effects on target binding, thus contributing to off-target activity of CRISPR-Cas effectors. Here, we define the seed sequence of the Type V Cas12b effector from Bacillus thermoamylovorans. While the Cas12b seed is just five bases long, in contrast to all other effectors characterized to date, the nucleotide base at the site of target cleavage makes a very strong contribution to target binding. The generality of this additional requirement was confirmed during analysis of target recognition by Cas12b effector from Alicyclobacillus acidoterrestris. Thus, while the short seed may contribute to Cas12b promiscuity, the additional specificity determinant at the site of cleavage may have a compensatory effect making Cas12b suitable for specialized genome editing applications.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Bacillus/genética , Sequência de Bases , DNA Bacteriano/genética , Escherichia coli , Biblioteca Gênica , Conformação de Ácido Nucleico
9.
Nucleic Acids Res ; 46(1): 431-441, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29165680

RESUMO

RNA polymerase (RNAP) is a major target of gene regulation. Thermus thermophilus bacteriophage P23-45 encodes two RNAP binding proteins, gp39 and gp76, which shut off host gene transcription while allowing orderly transcription of phage genes. We previously reported the structure of the T. thermophilus RNAP•σA holoenzyme complexed with gp39. Here, we solved the structure of the RNAP•σA holoenzyme bound with both gp39 and gp76, which revealed an unprecedented inhibition mechanism by gp76. The acidic protein gp76 binds within the RNAP cleft and occupies the path of the template DNA strand at positions -11 to -4, relative to the transcription start site at +1. Thus, gp76 obstructs the formation of an open promoter complex and prevents transcription by T. thermophilus RNAP from most host promoters. gp76 is less inhibitory for phage transcription, as tighter RNAP interaction with the phage promoters allows the template DNA to compete with gp76 for the common binding site. gp76 also inhibits Escherichia coli RNAP highlighting the template-DNA binding site as a new target site for developing antibacterial agents.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Thermus thermophilus/enzimologia , Proteínas Virais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Sítios de Ligação , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Interações Hospedeiro-Patógeno , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Thermus thermophilus/genética , Thermus thermophilus/virologia , Proteínas Virais/química , Proteínas Virais/genética
10.
Proc Natl Acad Sci U S A ; 114(21): 5443-5448, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484024

RESUMO

The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) endonuclease cleaves double-stranded DNA sequences specified by guide RNA molecules and flanked by a protospacer adjacent motif (PAM) and is widely used for genome editing in various organisms. The RNA-programmed Cas9 locates the target site by scanning genomic DNA. We sought to elucidate the mechanism of initial DNA interrogation steps that precede the pairing of target DNA with guide RNA. Using fluorometric and biochemical assays, we studied Cas9/guide RNA complexes with model DNA substrates that mimicked early intermediates on the pathway to the final Cas9/guide RNA-DNA complex. The results show that Cas9/guide RNA binding to PAM favors separation of a few PAM-proximal protospacer base pairs allowing initial target interrogation by guide RNA. The duplex destabilization is mediated, in part, by Cas9/guide RNA affinity for unpaired segments of nontarget strand DNA close to PAM. Furthermore, our data indicate that the entry of double-stranded DNA beyond a short threshold distance from PAM into the Cas9/single-guide RNA (sgRNA) interior is hindered. We suggest that the interactions unfavorable for duplex DNA binding promote DNA bending in the PAM-proximal region during early steps of Cas9/guide RNA-DNA complex formation, thus additionally destabilizing the protospacer duplex. The mechanism that emerges from our analysis explains how the Cas9/sgRNA complex is able to locate the correct target sequence efficiently while interrogating numerous nontarget sequences associated with correct PAMs.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , DNA/metabolismo , Endonucleases/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteína 9 Associada à CRISPR , Escherichia coli
11.
Nucleic Acids Res ; 45(6): 3580-3590, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28100693

RESUMO

Bacteriophages and large dsDNA viruses encode sophisticated machinery to translocate their DNA into a preformed empty capsid. An essential part of this machine, the large terminase protein, processes viral DNA into constituent units utilizing its nuclease activity. Crystal structures of the large terminase nuclease from the thermophilic bacteriophage G20c show that it is most similar to the RuvC family of the RNase H-like endonucleases. Like RuvC proteins, the nuclease requires either Mn2+, Mg2+ or Co2+ ions for activity, but is inactive with Zn2+ and Ca2+. High resolution crystal structures of complexes with different metals reveal that in the absence of DNA, only one catalytic metal ion is accommodated in the active site. Binding of the second metal ion may be facilitated by conformational variability, which enables the two catalytic aspartic acids to be brought closer to each other. Structural comparison indicates that in common with the RuvC family, the location of the two catalytic metals differs from other members of the RNase H family. In contrast to a recently proposed mechanism, the available data do not support binding of the two metals at an ultra-short interatomic distance. Thus we postulate that viral terminases cleave DNA by the canonical RuvC-like mechanism.


Assuntos
Endodesoxirribonucleases/química , Metais/química , Proteínas Virais/química , Biocatálise , Domínio Catalítico , Clivagem do DNA , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Genoma Viral , Modelos Moleculares , Recombinases/química , Thermus thermophilus/enzimologia , Proteínas Virais/metabolismo , Montagem de Vírus
12.
Science ; 353(6299): aaf5573, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27256883

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated genes (Cas) adaptive immune system defends microbes against foreign genetic elements via DNA or RNA-DNA interference. We characterize the class 2 type VI CRISPR-Cas effector C2c2 and demonstrate its RNA-guided ribonuclease function. C2c2 from the bacterium Leptotrichia shahii provides interference against RNA phage. In vitro biochemical analysis shows that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave single-stranded RNA targets carrying complementary protospacers. In bacteria, C2c2 can be programmed to knock down specific mRNAs. Cleavage is mediated by catalytic residues in the two conserved Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, mutations of which generate catalytically inactive RNA-binding proteins. These results broaden our understanding of CRISPR-Cas systems and suggest that C2c2 can be used to develop new RNA-targeting tools.


Assuntos
Imunidade Adaptativa/genética , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Endorribonucleases/metabolismo , Leptotrichia/enzimologia , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endorribonucleases/química , Endorribonucleases/genética , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/virologia , Técnicas de Silenciamento de Genes , Loci Gênicos , Leptotrichia/genética , Leptotrichia/imunologia , Levivirus/imunologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Clivagem do RNA
13.
Virology ; 495: 185-96, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27236306

RESUMO

Bacteriophage AR9 and its close relative PBS1 have been extensively used to construct early Bacillus subtilis genetic maps. Here, we present the 251,042bp AR9 genome, a linear, terminally redundant double-stranded DNA containing deoxyuridine instead of thymine. Multiple AR9 genes are interrupted by non-coding sequences or sequences encoding putative endonucleases. We show that these sequences are group I and group II self-splicing introns. Eight AR9 proteins are homologous to fragments of bacterial RNA polymerase (RNAP) subunits ß/ß'. These proteins comprise two sets of paralogs of RNAP largest subunits, with each paralog encoded by two disjoint phage genes. Thus, AR9 is a phiKZ-related giant phage that relies on two multisubunit viral RNAPs to transcribe its genome independently of host transcription apparatus. Purification of one of PBS1/AR9 RNAPs has been reported previously, which makes AR9 a promising object for further studies of RNAP evolution, assembly and mechanism.


Assuntos
Fagos Bacilares/genética , RNA Polimerases Dirigidas por DNA/genética , Genoma Viral , Subunidades Proteicas/genética , Fagos Bacilares/classificação , Fagos Bacilares/metabolismo , Sequência de Bases , Sequência Consenso , Replicação do DNA , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Ordem dos Genes , Íntrons , Fases de Leitura Aberta , Filogenia , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Subunidades Proteicas/metabolismo , Splicing de RNA , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Nucleic Acids Res ; 44(6): 2837-45, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26945042

RESUMO

CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR-Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3'-terminal segments. This result implies that the 3'-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3'-terminal stem loops leads to reduced activity during genomic editing.


Assuntos
Bioensaio , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Oligonucleotídeos/metabolismo , RNA Guia de Cinetoplastídeos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Proteína 9 Associada à CRISPR , Endonucleases/genética , Endonucleases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Dados de Sequência Molecular , Oligonucleotídeos/síntese química , Ligação Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/genética
15.
PLoS One ; 10(12): e0144940, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26670620

RESUMO

Factor XIIa (fXIIa) is a serine protease that triggers the coagulation contact pathway and plays a role in thrombosis. Because it interferes with coagulation testing, the need to inhibit fXIIa exists in many cases. Infestin-4 (Inf4) is a Kazal-type inhibitor of fXIIa. Its specificity for fXIIa can be enhanced by point mutations in the protease-binding loop. We attempted to adapt Inf4 for the selective repression of the contact pathway under various in vitro conditions, e.g., during blood collection and in 'global' assays of tissue factor (TF)-dependent coagulation. First, we designed a set of new Inf4 mutants that, in contrast to wt-Inf4, had stabilized canonical conformations during molecular dynamics simulation. Off-target activities against factor Xa (fXa), plasmin, and other coagulation proteases were either reduced or eliminated in these recombinant mutants, as demonstrated by chromogenic assays. Interactions with fXIIa and fXa were also analyzed using protein-protein docking. Next, Mutant B, one of the most potent mutants (its Ki for fXIIa is 0.7 nM) was tested in plasma. At concentrations 5-20 µM, this mutant delayed the contact-activated generation of thrombin, as well as clotting in thromboelastography and thrombodynamics assays. In these assays, Mutant B did not affect coagulation initiated by TF, thus demonstrating sufficient selectivity and its potential practical significance as a reagent for coagulation diagnostics.


Assuntos
Fator XIIa/antagonistas & inibidores , Proteínas de Insetos/farmacologia , Proteínas Mutantes/farmacologia , Sequência de Aminoácidos , Coagulação Sanguínea/efeitos dos fármacos , Desenho de Fármacos , Fator XIIa/metabolismo , Fator Xa/metabolismo , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Cinética , Dados de Sequência Molecular , Proteínas de Plantas/farmacologia , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , Especificidade por Substrato , Tiorredoxinas/metabolismo
16.
Mol Cell ; 60(3): 385-97, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593719

RESUMO

Microbial CRISPR-Cas systems are divided into Class 1, with multisubunit effector complexes, and Class 2, with single protein effectors. Currently, only two Class 2 effectors, Cas9 and Cpf1, are known. We describe here three distinct Class 2 CRISPR-Cas systems. The effectors of two of the identified systems, C2c1 and C2c3, contain RuvC-like endonuclease domains distantly related to Cpf1. The third system, C2c2, contains an effector with two predicted HEPN RNase domains. Whereas production of mature CRISPR RNA (crRNA) by C2c1 depends on tracrRNA, C2c2 crRNA maturation is tracrRNA independent. We found that C2c1 systems can mediate DNA interference in a 5'-PAM-dependent fashion analogous to Cpf1. However, unlike Cpf1, which is a single-RNA-guided nuclease, C2c1 depends on both crRNA and tracrRNA for DNA cleavage. Finally, comparative analysis indicates that Class 2 CRISPR-Cas systems evolved on multiple occasions through recombination of Class 1 adaptation modules with effector proteins acquired from distinct mobile elements.


Assuntos
Bactérias , Proteínas de Bactérias , Sistemas CRISPR-Cas/fisiologia , Evolução Molecular , RNA Bacteriano , Ribonucleases , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estrutura Terciária de Proteína , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Recombinação Genética/fisiologia , Ribonucleases/genética , Ribonucleases/metabolismo
17.
Nucleic Acids Res ; 43(21): 10411-20, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26490960

RESUMO

The infection of Pseudomonas aeruginosa by the giant bacteriophage phiKZ is resistant to host RNA polymerase (RNAP) inhibitor rifampicin. phiKZ encodes two sets of polypeptides that are distantly related to fragments of the two largest subunits of cellular multisubunit RNAPs. Polypeptides of one set are encoded by middle phage genes and are found in the phiKZ virions. Polypeptides of the second set are encoded by early phage genes and are absent from virions. Here, we report isolation of a five-subunit RNAP from phiKZ-infected cells. Four subunits of this enzyme are cellular RNAP subunits homologs of the non-virion set; the fifth subunit is a protein of unknown function. In vitro, this complex initiates transcription from late phiKZ promoters in rifampicin-resistant manner. Thus, this enzyme is a non-virion phiKZ RNAP responsible for transcription of late phage genes. The phiKZ RNAP lacks identifiable assembly and promoter specificity subunits/factors characteristic for eukaryal, archaeal and bacterial RNAPs and thus provides a unique model for comparative analysis of the mechanism, regulation and evolution of this important class of enzymes.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Fagos de Pseudomonas/enzimologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sequência Conservada , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Pseudomonas aeruginosa/virologia , Transcrição Gênica , Proteínas Virais/isolamento & purificação
18.
J Mol Biol ; 426(24): 3973-3984, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25311862

RESUMO

Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis.


Assuntos
DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Iniciação da Transcrição Genética , Biocatálise , DNA Bacteriano/química , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Fator sigma/química , Fator sigma/genética , Fator sigma/metabolismo , Sítio de Iniciação de Transcrição
19.
J Proteome Res ; 13(10): 4446-56, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25185497

RESUMO

Addressing the functionality of predicted genes remains an enormous challenge in the postgenomic era. A prime example of genes lacking functional assignments are the poorly conserved, early expressed genes of lytic bacteriophages, whose products are involved in the subversion of the host metabolism. In this study, we focused on the composition of important macromolecular complexes of Pseudomonas aeruginosa involved in transcription, DNA replication, fatty acid biosynthesis, RNA regulation, energy metabolism, and cell division during infection with members of seven distinct clades of lytic phages. Using affinity purifications of these host protein complexes coupled to mass spectrometric analyses, 37 host complex-associated phage proteins could be identified. Importantly, eight of these show an inhibitory effect on bacterial growth upon episomal expression, suggesting that these phage proteins are potentially involved in hijacking the host complexes. Using complementary protein-protein interaction assays, we further mapped the inhibitory interaction of gp12 of phage 14-1 to the α subunit of the RNA polymerase. Together, our data demonstrate the powerful use of interactomics to unravel the biological role of hypothetical phage proteins, which constitute an enormous untapped source of novel antibacterial proteins. (Data are available via ProteomeXchange with identifier PXD001199.).


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Virais/metabolismo , Marcadores de Afinidade , Western Blotting , Cromatografia de Afinidade , Ligação Proteica , Espectrometria de Massas em Tandem
20.
Bacteriophage ; 4: e29399, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25105059

RESUMO

Transcription initiation is the central point of gene expression regulation. Understanding of molecular mechanism of transcription regulation requires, ultimately, the structural understanding of consequences of transcription factors binding to DNA-dependent RNA polymerase (RNAP), the enzyme of transcription. We recently determined a structure of a complex between transcription factor gp39 encoded by a Thermus bacteriophage and Thermus RNAP holoenzyme. In this addendum to the original publication, we highlight structural insights that explain the ability of gp39 to act as an RNAP specificity switch which inhibits transcription initiation from a major class of bacterial promoters, while allowing transcription from a minor promoter class to continue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA