RESUMO
Anti-Lactobacillus johnsonii (LJ) antisera generated by immunization of rabbits with LJ reacted with glyceroglycolipids in LJ, i.e. dihexaosyl diacylglycerol (DH-DG), trihexaosyl DG (TH-DG) and tetrahexaosyl DG (TetH-DG), whose reactivities with antisera increased proportionally with longer carbohydrate chains of glycolipids. Structural analyses of glycolipids from LJ revealed that DH-DG was Galα1-2Glcα1-3'DG, and TH-DG and TetH-DG were novel derivatives of it with α-Gal at the non-reducing terminal, i.e. Galα1-6Galα1-2Glcα1-3'DG and Galα1-6Galα1-6Galα1-2Glcα1-3'DG, respectively. DH-DG was commonly present in several lactobacilli examined, but TetH-DG was restricted to LJ, L. intestinalis and L. reuteri, while the TH-DGs from L. casei were Glc1-6Galα1-2Glcα1-3'DG and an esterified derivative of it, Glc1-6Galα1-2Glc(6-fatty acid)α1-3'DG, as reported in the literature. Anti-LJ antisera reacted with TH-DG and esterified TH-DG from L. casei to lesser extents, but not at all with gentibiosyl DG from Staphylococcus epidermidis or kojibiosyl DG from Streptococcus salivalis or sphingoglycolipids containing α-Gal residues. The major molecular species of glycolipids obtained from lactobacilli were 11-octadecenoic and 11,12-methylene-octadecanoic acids-containing ones. Also, human IgM antibodies against TH-DG and TetH-DG from LJ were detected in human sera, with various antibody titres, indicating that an immune reaction to symbiotic lactobacilli occurs against their glycolipid antigens, TH-DG and TetH-DG.