RESUMO
The CLARINET trial led to the approval of lanreotide for the treatment of patients with gastroenteropancreatic neuroendocrine tumors (NETs). It is hypothesized that lanreotide regulates proliferation, hormone synthesis, and other cellular functions via binding to somatostatin receptors (SSTR1-5) present in NETs. However, our knowledge of how lanreotide affects the immune system is limited. In vitro studies have investigated functional immune response parameters with lanreotide treatment in healthy donor T cell subsets, encompassing the breadth of SSTR expression, apoptosis induction, cytokine production, and activity of transcription factor signaling pathways. In our study, we characterized in vitro immune mechanisms in healthy donor T cells in response to lanreotide. We also studied the in vivo effects by looking at differential gene expression pre- and post-lanreotide therapy in patients with NET. Immune-focused gene and protein expression profiling was performed on peripheral blood samples from 17 NET patients and correlated with clinical response. In vivo, lanreotide therapy showed reduced effects on wnt, T cell receptor (TCR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling in CD8+ T cells in responders compared to non-responders. Compared to non-responders, responders showed reduced effects on cytokine and chemokine signaling but greater effects on ubiquitination and proteasome degradation genes. Our results suggest significant lanreotide pharmacodynamic effects on immune function in vivo, which correlate with responses in NET patients. This is not evident from experimental in vitro settings.
RESUMO
Cytotoxic CD8+ T lymphocyte (CTL) recognition of non-mutated tumor-associated antigens (TAA), present on cancer cells and also in healthy tissues, is an important element of cancer immunity, but the mechanism of its selectivity for cancer cells and opportunities for its enhancement remain elusive. In this study, we found that CTL expression of the NK receptors (NKR) DNAM1 and NKG2D was associated with the effector status of CD8+ tumor-infiltrating lymphocytes and long-term survival of patients with melanoma. Using MART1 and NY-ESO-1 as model TAAs, we demonstrated that DNAM1 and NKG2D regulate T-cell receptor (TCR) functional avidity and set the threshold for TCR activation of human TAA-specific CTLs. Superior co-stimulatory effects of DNAM1 over CD28 involved enhanced TCR signaling, CTL killer function, and polyfunctionality. Double transduction of human CTLs with TAA-specific TCR and NKRs resulted in strongly enhanced antigen sensitivity, without a reduction in antigen specificity and selectivity of killer function. In addition, the elevation of NKR ligand expression on cancer cells due to chemotherapy also increased CTL recognition of cancer cells expressing low levels of TAAs. Our data help explain the ability of self-antigens to mediate tumor rejection in the absence of autoimmunity and support the development of dual-targeting adoptive T-cell therapies that use NKRs to enhance the potency and selectivity of recognition of TAA-expressing cancer cells.
Assuntos
Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Linfócitos T Citotóxicos , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Melanoma/imunologia , Melanoma/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Linhagem Celular Tumoral , Antígeno MART-1/imunologia , Antígeno MART-1/metabolismo , Citotoxicidade ImunológicaRESUMO
Identifying plasma biomarkers early after allo-HCT may become crucial to prevent and treat severe aGvHD. We utilized samples from 203 allo-HCT patients selected from the Blood & Marrow Transplant Clinical Trials Network (BMT CTN) to identify new biomarker models to predict aGvHD and overall mortality. Two new biomarkers (Gal-3 and LAG-3), and previously identified biomarkers (ST2/IL33R, IL6, Reg3A, PD-1, TIM-3, TNFR1) were screened. Increased Gal-3 levels measured at Day +7 post-transplant predicted the development of aGvHD (grade 2-4) in the total population [AUC: 0.602; P = 0.045] while higher Day +14 levels predicted overall mortality due to toxicity among patients receiving reduced intensity conditioning [P = 0.028] but not myeloablative conditioning. Elevated LAG-3 levels (Day +21) were associated with less severe aGvHD [159.1 ng/mL vs 222.0 ng/mL; P = 0.046]. We developed a model utilizing Gal-3, LAG-3, and PD-1 levels at Days +14 and +21 with an improved performance to predict aGvHD and overall non-relapse mortality. We confirmed four informative biomarkers (Reg3A, ST2, TIM-3, and TNFR1) predict severe aGvHD at day +14 and day +21 (grade 3-4). In conclusion, the combination of Gal-3 alone or in combination with LAG-3, and PD-1 is a new informative model to predict aGvHD development and overall non-relapse mortality after allo-HCT.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Galectina 3 , Receptor Celular 2 do Vírus da Hepatite A , Receptor de Morte Celular Programada 1 , Proteína 1 Semelhante a Receptor de Interleucina-1 , Receptores Tipo I de Fatores de Necrose Tumoral , Biomarcadores , Bancos de Espécimes BiológicosRESUMO
BACKGROUND: Presence of cytotoxic T lymphocytes (CTL) in the tumor microenvironment (TME) predicts the effectiveness of cancer immunotherapies. The ability of toll-like receptor 3 (TLR3) ligands, interferons (IFNs) and COX2 inhibitors to synergistically induce CTL-attracting chemokines (but not regulatory T cell (Treg)-attractants) in the TME, but not in healthy tissues, observed in our preclinical studies, suggested that their systemic application can reprogram local TMEs. METHODS: Six evaluable patients (33-69 years) with metastatic triple-negative breast cancer received six doses of systemic chemokine-modulating (CKM) regimen composed of TLR3 ligand (rintatolimod; 200 mg; intravenous), IFN-α2b (20 MU/m2; intravenous) and COX2 inhibitor (celecoxib; 2×200 mg; oral) over 2 weeks. The predetermined primary endpoint was the intratumoral change in the expression of CTL marker, CD8α, in the post-CKM versus pre-CKM tumor biopsies. Patients received follow-up pembrolizumab (200 mg, intravenously, every 3 weeks), starting 3-8 days after completion of CKM. RESULTS: Post-CKM biopsies showed selectively increased CTL markers CD8α (average 10.2-fold, median 5.5-fold, p=0.034) and granzyme B (GZMB; 6.1-fold, median 5.8-fold, p=0.02), but not FOXP3 (Treg marker) relative to HPRT1 expression, resulting in the increases in average CD8α/FOXP3 ratio and GZMB/FOXP3 ratio. CKM increased intratumoral CTL-attractants CCL5 and CXCL10, but not Treg-attractants CCL22 or CXCL12. In contrast, CD8+ T cells and their CXCR3+ subset showed transient decreases in blood. One clinical response (breast tumor autoamputation) and three stable diseases were observed. The patient with clinical response remains disease free, with a follow-up of 46 months as of data cut-off. CONCLUSIONS: Short-term systemic CKM selectively increases CTL numbers and CTL/Treg ratios in the TME, while transiently decreasing CTL numbers in the blood. Transient effects of CKM suggest that its simultaneous application with checkpoint blockade and other forms of immunotherapy may be needed for optimal outcomes.
Assuntos
Neoplasias da Mama , Linfócitos T Citotóxicos , Humanos , Feminino , Linfócitos T Citotóxicos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias da Mama/patologia , Receptor 3 Toll-Like/metabolismo , Microambiente Tumoral , Ligantes , Interferon-alfa/metabolismo , Fatores de Transcrição Forkhead/metabolismoRESUMO
CD28-driven "signal 2" is critical for naïve CD8+ T cell responses to dendritic cell (DC)-presented weak antigens, including non-mutated tumor-associated antigens (TAAs). However, it is unclear how DC-primed cytotoxic T lymphocytes (CTLs) respond to the same TAAs presented by cancer cells which lack CD28 ligands. Here, we show that NK receptors (NKRs) DNAM-1 and NKG2D replace CD28 during CTL re-activation by cancer cells presenting low levels of MHC I/TAA complexes, leading to enhanced proximal TCR signaling, immune synapse formation, CTL polyfunctionality, release of cytolytic granules and antigen-specific cancer cell killing. Double-transduction of T cells with recombinant TCR and NKR constructs or upregulation of NKR-ligand expression on cancer cells by chemotherapy enabled effective recognition and killing of poorly immunogenic tumor cells by CTLs. Operational synergy between TCR and NKRs in CTL recognition explains the ability of cancer-expressed self-antigens to serve as tumor rejection antigens, helping to develop more effective therapies.
RESUMO
Hypoxic conditions preserve the multipotency and self-renewing capacity of murine bone marrow and human cord blood stem cells. Blood samples stored in sealed blood gas tubes become hypoxic as leukocytes metabolize and consume oxygen. Taken together, these observations suggest that peripheral blood stem cell (PBSC) samples stored under airtight conditions become hypoxic, and that the stem cells contained may undergo qualitative or quantitative changes. This study aimed to determine the effect of storage for 8 hours in a sealed system on PBSC samples. Granulocyte colony-stimulating factor-mobilized PBSC samples were collected prospectively from 9 patients with myeloma or amyloidosis prior to apheresis, followed by measurement of CO2, O2, hydrogen ion (pH), lactate, and glucose concentrations in the blood and immunophenotyping of stem cell and multipotent progenitor cell populations before and after 8 hours of storage in sealed blood collection tubes. Blood concentrations of O2 and glucose and pH measurements were significantly decreased, whereas concentrations of CO2 and lactate were significantly increased after storage. Significantly higher concentrations of CD34+ cells (552 ± 84 cells/106 total nucleated cells [TNCs] versus 985 ± 143 cells/106 TNCs; P = .03), CD34+CD38- cells (98 ± 32 cells/106 TNCs versus 158 ± 52 cells/106 TNCs; P = .03), CD34+CD38+ cells (444 ± 92 cells/106 TNCs versus 789 ± 153 cells/106 TNCs; P = .03), and CD34+CD38-CD45RA-CD90+ cells (55 ± 17 cells/106 TNCs versus 89 ± 25 cells/106 TNCs; P = .02) were detected after 8 hours of storage. The changes in concentrations of CD34+CD38+ cells and CD34+ cells were inversely associated with the change in glucose concentration (P = .003 and P < .001, respectively) and positively associated with the change in lactate concentration (P = .01 and P <.001, respectively) after 8 hours of airtight storage. Storage of PBSC samples in a sealed, airtight environment is associated with microenvironmental changes consistent with hypoxia and increased concentrations of immunophenotypically defined stem cells. These results may have clinical implications with regard to the collection and processing of stem cell products and warrant confirmation with functional and mechanistic studies.
Assuntos
Células-Tronco de Sangue Periférico , Humanos , Animais , Camundongos , Células-Tronco de Sangue Periférico/metabolismo , Dióxido de Carbono , Antígenos CD34/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Antígenos Thy-1/metabolismo , Moléculas de Adesão Celular , LactatosRESUMO
Kidney allograft survival remains poorer in Black compared to White recipients due to racial differences in calcineurin inhibitor (CNI) pharmacology. P-glycoprotein (P-gp), an ABC efflux transporter expressed in peripheral blood mononuclear cells (PBMCs), modulates CNI pharmacokinetics and intracellular pharmacology. This study investigated P-gp function in PBMC ex vivo at 0 (trough), 4, 8, and 12 h in stable Black and White male and female kidney transplant recipients (n = 67) receiving tacrolimus and mycophenolic acid. Tacrolimus doses were adjusted to troughs of 4-10 ng/ml. P-gp function was quantified with flow cytometric measurement of cyclosporine (CYA; 2.5 µM)-reversible efflux of P-gp substrate, 3,3'-Diethyloxacarbocyanine iodide by determining the percentage change of mean fluorescent intensity (MFI) with CYA (% ΔMFI). The composite parameter of area under the concentration versus time (AUC)0-12h % ΔMFI estimated P-gp function. Data analysis examined race, sex, and race-sex associations to P-gp function. A secondary aim analyzed ABCB1 genotypes: 1236C>T (rs1128503), 2677G>T/A (rs2032582), 3435C>T (rs1045642), and P-gp function. P-gp function (% ΔMFI) was higher in White patients at troughs (p = 0.031) compared to Black counterparts with similar trends at 4 and 8 h. Reduced AUC0-12h % ΔMFI was noted in Black recipients (N = 32) compared with Whites (N = 35, p = 0.029) with notable pairwise adjusted differences between Black and White women (p = 0.021). Higher AUC0-12h % ΔMFI was associated with ABCB1 2677 TT compared to GG variants (p = 0.035). The AUC0-12h % ΔMFI was greater in White than Black subjects. P-gp function was higher at troughs in White subjects and differed between race-sex groups. P-gp function in PBMC may influence intracellular tacrolimus exposure and inter-relating pharmacodynamic responses which may support race and sex pharmacologic differences.
Assuntos
Transplante de Rim , Tacrolimo , Humanos , Feminino , Masculino , Tacrolimo/farmacocinética , Imunossupressores/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Leucócitos Mononucleares , Transplante de Rim/efeitos adversos , Brancos , Ciclosporina/farmacocinética , Inibidores de Calcineurina , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Genótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
PURPOSE: Tilsotolimod is an investigational synthetic Toll-like receptor 9 (TLR9) agonist that has demonstrated antitumor activity in preclinical models. The ILLUMINATE-101 phase I study explored the safety, dose, efficacy, and immune effects of intratumoral (it) tilsotolimod monotherapy in multiple solid tumors. PATIENTS AND METHODS: Patients with a diagnosis of refractory cancer not amenable to curative therapies received tilsotolimod in doses escalating from 8 to 32 mg into a single lesion at weeks 1, 2, 3, 5, 8, and 11. Additional patients with advanced malignant melanoma were enrolled into an expansion cohort at the 8 mg dose. Objectives included characterizing the safety, establishing the dose, efficacy, and immunologic assessment. Blood samples and tumor biopsies of injected and noninjected lesions were obtained at baseline and 24 hours after treatment for immune analyses. RESULTS: Thirty-eight and 16 patients were enrolled into the dose escalation and melanoma expansion cohorts, respectively. Deep visceral injections were conducted in 91% of patients. No dose-limiting toxicities (DLT) or grade 4 treatment-related adverse events were observed. Biopsies 24 hours after treatment demonstrated an increased IFN pathway signature and dendritic cell maturation. Immunologic profiling revealed upregulation of IFN-signaling genes and modulation of genes for checkpoint proteins. In the dose escalation cohort, 12 (34%) of 35 evaluable patients achieved a best overall response rate (ORR) of stable disease (SD), whereas 3 (19%) of 16 evaluable patients in the melanoma cohort achieved stable disease. CONCLUSIONS: Overall, tilsotolimod monotherapy was generally well tolerated and induced rapid, robust alterations in the tumor microenvironment. See related commentary by Punekar and Weber, p. 5007.
Assuntos
Melanoma , Neoplasias , Neoplasias Cutâneas , Humanos , Receptor Toll-Like 9 , Apresentação de Antígeno , Neoplasias/patologia , Melanoma/tratamento farmacológico , Melanoma/genética , Estudos de Coortes , Microambiente TumoralRESUMO
PURPOSE: We evaluated the antitumor efficacy of cetuximab in combination with pembrolizumab in patients with RAS wild-type (RASwt), metastatic colorectal adenocarcinoma (mCRC). PATIENTS AND METHODS: In this phase Ib/II study, cetuximab was combined with pembrolizumab in patients with RASwt mCRC with ≥ one prior line of therapy for advanced disease. We analyzed baseline on-treatment tumor tissues for changes in the tumor microenvironment (TME), using flow cytometry and multispectral immunofluorescence. RESULTS: Forty-four patients were evaluable for efficacy. The study was negative for the primary efficacy endpoint [overall response rate: 2.6%, 6-month progression-free survival (PFS): 31%; P = 0.52]. Median PFS was 4.1 months [95% confidence interval (CI): 3.9-5.5 months]. No increase in adverse effects was identified. We observed favorable immunomodulation with 47% increase in the number of intratumoral CTLs posttreatment (P = 0.035). These changes were more pronounced in patients with tumor shrinkage (P = 0.05). The TME was characterized by high numbers of TIM3+ and CTLA4+ cells; there were few activated OX40+ cells. PD-L1 expression was higher in pretreatment tumor cells from metastatic sites versus primary tumor samples (P < 0.05). Higher numbers of PD-L1+ tumor cells at baseline were associated with tumor shrinkage (P = 0.04). Analysis of immune populations in the blood demonstrated decreases in PD-1+ memory effector cells (P = 0.04) and granulocytic myeloid-derived suppressor cells (P = 0.03), with simultaneous increases in CD4+/CTLA4+ cells (P = 0.01). CONCLUSIONS: The combination of cetuximab and pembrolizumab is inactive in patients with RASwt mCRC, despite its partial local immunologic efficacy. Further development of immuno-oncology combinations with enhanced efficacy and/or targeting additional or alternative immune checkpoints merits investigation.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorretais , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Cetuximab , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fluoruracila , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Microambiente TumoralRESUMO
We have demonstrated that oncolytic vaccinia virus synergizes with doxorubicin (DOX) in inducing immunogenic cell death in platinum-resistant ovarian cancer cells and increases survival in syngeneic and xenograft tumor models. However, the mechanisms underlying the virus- and doxorubicin-mediated cancer cell death remain unknown. In this study, we investigated the effect of the oncolytic virus and doxorubicin used alone or in combination on activation of the cytoplasmic transcription factor CREB3L1 (cyclic AMP [cAMP] response element-binding protein 3-like 1) in ovarian cancer cell lines and clinical specimens. We demonstrated that doxorubicin-mediated cell death in ovarian cancer cell lines was associated with nuclear translocation of CREB3L1 and that the effect was augmented by infection with oncolytic vaccinia virus or treatment with recombinant interferon (IFN)-ß used as a viral surrogate. This combination treatment was also effective in mediating nuclear translocation of CREB3L1 in cancer cells isolated from ovarian tumor biopsies at different stages of disease progression. The measurement of CREB3L1 expression in clinical specimens of ovarian cancer revealed lack of correlation with the stage of disease progression, suggesting that understanding the mechanisms of nuclear accumulation of CREB3L1 after doxorubicin treatment alone or in combination with oncolytic virotherapy may lead to the development of more effective treatment strategies against ovarian cancer.
RESUMO
BACKGROUND: The human tumor microenvironment (TME) is a complex and dynamic milieu of diverse acellular and cellular components, creating an immunosuppressive environment, which contributes to tumor progression. We have previously shown that phosphatidylserine (PS) expressed on the surface of exosomes isolated from human TMEs is causally linked to T-cell immunosuppression, representing a potential immunotherapeutic target. In this study, we investigated the effect of ExoBlock, a novel PS-binding molecule, on T-cell responses in the TME. METHODS: We designed and synthesized a new compound, (ZnDPA)6-DP-15K, a multivalent PS binder named ExoBlock. The PS-binding avidity of ExoBlock was tested using an in vitro competition assay. The ability of this molecule to reverse exosome-mediated immunosuppression in vitro was tested using human T-cell activation assays. The in vivo therapeutic efficacy of ExoBlock was then tested in two different human tumor xenograft models, the melanoma-based xenomimetic (X-)mouse model, and the ovarian tumor-based omental tumor xenograft (OTX) model. RESULTS: ExoBlock was able to bind PS with high avidity and was found to consistently and significantly block the immunosuppressive activity of human ovarian tumor and melanoma-associated exosomes in vitro. ExoBlock was also able to significantly enhance T cell-mediated tumor suppression in vivo in both the X-mouse and the OTX model. In the X-mouse model, ExoBlock suppressed tumor recurrence in a T cell-dependent manner. In the OTX model, ExoBlock treatment resulted in an increase in the number as well as function of CD4 and CD8 T cells in the TME, which was associated with a reduction in tumor burden and metastasis, as well as in the number of circulating PS+ exosomes in tumor-bearing mice. CONCLUSION: Our results establish that targeting exosomal PS in TMEs with ExoBlock represents a promising strategy to enhance antitumor T-cell responses.
Assuntos
Exossomos/metabolismo , Neoplasias/imunologia , Neoplasias Ovarianas/genética , Fosfatidilserinas/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neoplasias Ovarianas/patologia , Microambiente TumoralRESUMO
BACKGROUND: Dendritic cells (DCs) are a promising therapeutic target in cancer immunotherapy given their ability to prime antigen-specific T cells, and initiate antitumor immune response. A major obstacle for DC-based immunotherapy is the difficulty to obtain a sufficient number of functional DCs. Theoretically, this limitation can be overcome by using induced pluripotent stem cells (iPSCs); however, therapeutic strategies to engage iPSC-derived DCs (iPSC-DCs) into cancer immunotherapy remain to be elucidated. Accumulating evidence showing that induction of tumor-residing DCs enhances immunomodulatory effect of radiotherapy (RT) prompted us to investigate antitumor efficacy of combining intratumoral administration of iPSC-DCs with local RT. METHODS: Mouse iPSCs were differentiated to iPSC-DCs on OP9 stromal cells expressing the notch ligand delta-like 1 in the presence of granulocyte macrophage colony-stimulating factor. Phenotype and the capacities of iPSC-DCs to traffic tumor-draining lymph nodes (TdLNs) and prime antigen-specific T cells were evaluated by flow cytometry and imaging flow cytometry. Antitumor efficacy of intratumoral injection of iPSC-DCs and RT was tested in syngeneic orthotopic mouse tumor models resistant to anti-PD-1 ligand 1 (PD-L1) therapy. RESULTS: Mouse iPSC-DCs phenotypically resembled conventional type 2 DCs, and had a capacity to promote activation, proliferation and effector differentiation of antigen-specific CD8+ T cells in the presence of the cognate antigen in vitro. Combination of in situ administration of iPSC-DCs and RT facilitated the priming of tumor-specific CD8+ T cells, and synergistically delayed the growth of not only the treated tumor but also the distant non-irradiated tumors. Mechanistically, RT enhanced trafficking of intratumorally injected iPSC-DCs to the TdLN, upregulated CD40 expression, and increased the frequency of DC/CD8+ T cell aggregates. Phenotypic analysis of tumor-infiltrating CD8+ T cells and myeloid cells revealed an increase of stem-like Slamf6+ TIM3- CD8+ T cells and PD-L1 expression in tumor-associated macrophages and DCs. Consequently, combined therapy rendered poorly immunogenic tumors responsive to anti-PD-L1 therapy along with the development of tumor-specific immunological memory. CONCLUSIONS: Our findings illustrate the translational potential of iPSC-DCs, and identify the therapeutic efficacy of a combinatorial platform to engage them for overcoming resistance to anti-PD-L1 therapy in poorly immunogenic tumors.
Assuntos
Antígeno B7-H1/antagonistas & inibidores , Células Dendríticas/transplante , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia Adotiva , Células-Tronco Pluripotentes Induzidas/transplante , Melanoma Experimental/terapia , Neoplasias Cutâneas/terapia , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Radioterapia Adjuvante , Transdução de Sinais , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Carga Tumoral/efeitos dos fármacos , Microambiente TumoralRESUMO
Cells release extracellular vesicles (EVs) that can be detected both in vivo and in cell culture medium. Among EVs, exosomes are 50-150 nm vesicles that are systematically packaged into multivesicular bodies for release into the external environment. In cancer, these intentionally packaged exosomes carry a payload of proteins such as RNAs and surface receptors that facilitate the reprogramming of proximal cells to assemble a protumor microenvironment. Exosomes have been implicated as an important intermediary extracellular communication pathway between cells, including in melanoma. Human melanoma-derived exosomes (HMEX) have been demonstrated to modulate the extracellular environment and inhibit immune cell activation. There are many methods to isolate and enrich for exosomes and the method applied can impact yield and purity of the isolates. In this chapter we describe the REIUS (rapid exosome isolation using ultrafiltration and size exclusion chromatography) method to isolate HMEX from melanoma cell cultures and then demonstrate their enrichment using molecular and microscopic approaches.
Assuntos
Exossomos/química , Melanoma/química , Linhagem Celular Tumoral , Cromatografia em Gel , Humanos , UltrafiltraçãoRESUMO
The ability of cancer cells to ensure T-cell exclusion from the tumor microenvironment is a significant mechanism of resistance to anti-PD-1/PD-L1 therapy. Evidence indicates crucial roles of Batf3-dependent conventional type-1 dendritic cells (cDC1s) for inducing antitumor T-cell immunity; however, strategies to maximize cDC1 engagement remain elusive. Here, using multiple orthotopic tumor mouse models resistant to anti-PD-L1-therapy, we are testing the hypothesis that in situ induction and activation of tumor-residing cDC1s overcomes poor T-cell infiltration. In situ immunomodulation with Flt3L, radiotherapy, and TLR3/CD40 stimulation induces an influx of stem-like Tcf1+ Slamf6+ CD8+ T cells, triggers regression not only of primary, but also untreated distant tumors, and renders tumors responsive to anti-PD-L1 therapy. Furthermore, serial in situ immunomodulation (ISIM) reshapes repertoires of intratumoral T cells, overcomes acquired resistance to anti-PD-L1 therapy, and establishes tumor-specific immunological memory. These findings provide new insights into cDC1 biology as a critical determinant to overcome mechanisms of intratumoral T-cell exclusion.
Assuntos
Anticorpos/administração & dosagem , Células Dendríticas/imunologia , Neoplasias/tratamento farmacológico , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Resistência a Medicamentos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Microambiente TumoralRESUMO
Exosomes, including human melanoma-derived exosomes (HMEX), are known to suppress the function of immune effector cells, which for HMEX has been associated with the surface presence of the immune checkpoint ligand PD-L1. This study investigated the relationship between the BRAF mutational status of melanoma cells and the inhibition of secreted HMEX exosomes on antigen-specific human T cells. Exosomes were isolated from two melanoma cell lines, 2183-Her4 and 888-mel, which are genetically wild-type BRAFWT and BRAFV600E, respectively. HMEX were isolated using a modified, size-exclusion chromatography (SEC) method shown to reduce co-isolation of non-exosome-associated cytokines compared to ultracentrifugation isolation. The immunoinhibitory effect of the exosomes was tested in vitro on patient-derived NY-ESO-1-specific CD8+ T cells challenged with NY-ESO-1 antigen. HMEX from both cell lines inhibited the immune response of antigen-specific T cells comparably, as evidenced by the reduction of IFN-γ and TNF-α in NY-ESO-1 tetramer-positive cells. This inhibition could be partially reversed by the presence of anti-PD-L1 and anti-IL-10 antibodies. IL-10 has been demonstrated to be a critical pathway for sustaining enhanced tumorigenesis in BRAFV600E mutant cells compared to BRAFWT melanoma cells. Thus, we demonstrate that HMEX inhibit antigen-specific T cell responses independent of the BRAF mutational status of the parent cells. In addition, PD-L1 and IL-10 contribute to the HMEX-mediated immunosuppression of antigen-specific human T cells. The inhibitory capacity of exosomes should be taken into consideration when developing therapies that are reliant upon the potency of customized, antigen-specific effector T cells.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Exossomos/metabolismo , Imunomodulação/genética , Interleucina-10/metabolismo , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Alelos , Substituição de Aminoácidos , Apoptose , Biomarcadores Tumorais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas de Checkpoint Imunológico/metabolismo , Imunomodulação/efeitos dos fármacos , Interleucina-10/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
BACKGROUND: Antiangiogenic-targeting agents have low response rates in patients with nonpancreatic neuroendocrine tumors (NETs). Nintedanib is an oral antiangiogenic agent that has inhibitory effects on the fibroblast growth factor receptor, which is highly expressed in NETs. The authors hypothesized that nintedanib would be active in patients with nonpancreatic NETs. METHODS: Patients with advanced, grade 1 or 2, nonpancreatic NETs who were receiving a stable dose of somatostatin analogue were enrolled. Nintedanib was administered at a dose of 200 mg twice daily in 28-day cycles. The primary endpoint was progression-free survival (PFS) at 16 weeks. RESULTS: Thirty-two patients were enrolled, and 30 were evaluable for the primary outcome. Most had radiographic disease progression within 12 months before enrollment. The 16-week PFS rate was 83%, and the median PFS and overall survival were 11.0 months and 32.7 months, respectively. Nintedanib was well tolerated and delayed deterioration in quality of life. The baseline serotonin level had a strong, positive correlation with activated but exhausted T cells. CONCLUSIONS: Nintedanib is active in nonpancreatic NETs. The immunosuppressive effect of serotonin should be targeted in future clinical trials.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Indóis/administração & dosagem , Neovascularização Patológica/tratamento farmacológico , Tumores Neuroendócrinos/tratamento farmacológico , Idoso , Inibidores da Angiogênese/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Progressão da Doença , Feminino , Humanos , Indóis/efeitos adversos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neovascularização Patológica/patologia , Intervalo Livre de Progressão , Somatostatina/administração & dosagem , Somatostatina/efeitos adversos , Resultado do TratamentoRESUMO
Both exosomes and soluble factors have been implicated in the generation of an immunosuppressive tumour microenvironment. Determining the contribution of each requires stringent control of purity of the isolated analytes. The present study compares several conventional exosome isolation methods for the presence of co-enriched soluble factors while isolating exosomes from human melanoma-derived cell lines. The resultant preparations were analysed by multiplex bead array analysis for cytokine profiles, and by electron microscopy and nanotracking analysis for exosome size distribution and concentration. It is demonstrated that the amount and repertoire of soluble factors in exosome preparations is dependent upon the isolation method used. A combination of ultrafiltration and size exclusion chromatography yielded up to 58-fold more exosomes than ultracentrifugation, up to 836-fold lower concentrations of co-purified soluble factors when adjusted for exosome yield, and a greater than two-fold increase in PD-L1 expressing exosomes. Mechanistically, in context of the immunomodulatory effects of exosomes, the exosome isolation method should be carefully considered in order to limit any effects due instead to co-eluted soluble factors.
RESUMO
The multikinase inhibitor sorafenib is the only standard first-line therapy for hepatocellular carcinoma (HCC). Here, we report the dose-dependent effects of sorafenib on the immune response, which is related to nuclear factor of activated T cells 1 (NFAT1) activity. In vitro and in vivo experiments were performed with low and high doses of sorafenib using human T cells and spontaneous developed woodchuck HCC models. In vitro studies demonstrated that following exposure to a high dose of sorafenib the baseline activity of NFAT1 in T cells was significantly increased. In a parallel event, high dose sorafenib resulted in a significant decrease in T cell proliferation and increased the proportion of PD-1 expressing CD8+ T cells with NFAT1 activation. In the in vivo model, smaller tumors were detected in the low-dose sorafenib treated group compared to the placebo and high-dose treated groups. The low-dose sorafenib group showed a significant tumor growth delay with significantly more CD3+ cells in tumor. This study demonstrates that sorafenib has immunomodulatory effects in a dose- and time-dependent manner. Higher dose of sorafenib treatment was associated with immunosuppressive action. This observed effect of sorafenib should be taken into consideration in the selection of optimum starting dose for future trials.
RESUMO
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.