Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Anal Chem ; 96(2): 642-651, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165078

RESUMO

Adeno-associated virus (AAV) vectors are produced as a mixture of the desired particle (full particle, FP), which is filled with the designed DNA, product-related impurities such as particle without DNA (empty particle, EP), and aggregates. Cesium chloride or iodixanol equilibrium density gradient ultracentrifugation (DGE-UC) has been used for the purification of AAV vectors. DGE-UC can separate FP from impurities based on the difference in their buoyant densities. Here, we report the applications and limitations of equilibrium density gradient analytical ultracentrifugation (DGE-AUC) using a modern AUC instrument that employs DGE-UC principles for the characterization and quantitation of AAV vectors. We evaluated the quantitative ability of DGE-AUC in comparison with sedimentation velocity AUC (SV-AUC) or band sedimentation AUC (BS-AUC) using AAVs with different DNA lengths and different serotypes. DGE-AUC enabled the accurate quantification of the ratio of FP to EP when the AAV vector primarily contains these particles. Furthermore, we developed a new workflow to identify the components of separated peaks in addition to FP and EP. Ultraviolet absorption spectra obtained by multiwavelength detection can also support peak assignment following component identification. DGE-AUC experiments for AAV vectors have limitations with regard to minor components with low absorption at the detected wavelength or those with a density similar to that of major components of AAV vectors. DGE-AUC is the only analytical method that can evaluate particle density heterogeneity; therefore, SV-AUC or BS-AUC and DGE-AUC are complementary methods for reliable assessment of the purity of AAV vectors.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Ultracentrifugação/métodos , DNA
2.
Biomed Pharmacother ; 170: 116052, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141280

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated impressive success in the treatment of patients with hematologic tumors yet achieved very limited efficacy for solid tumors due to hurdles unique to solid tumors. It is also noted that the tumor microenvironment composition varies between tumor type, which again imposes unique set of hurdles in each solid tumor. Therefore, elucidation of individual hurdles is key to achieving successful CAR-T therapy for solid tumors. In the present study, we employed an orthotopic human PDAC xenograft model, in which quantitative, spatial and functional dynamics of CAR-T cells in tumor tissues were analyzed to obtain insights into ways of overcoming PDAC related hurdles. Contrary to previous studies that demonstrated a limited persistency and infiltration of CAR-T cells in many solid tumors, they persist and accumulated in PDAC tumor tissues. Ex vivo analysis revealed that CAR-T cells that had been recovered at different time points from mice bearing an orthotopic PDAC tumor exhibited a gradual loss of tumor reactivity. This loss of tumor reactivity of CAR-T cells was associated with the increased expression of AMP-activated protein kinase and Mitofusin 1/ Dynamin-related protein 1 ratio.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Xenoenxertos , Imunoterapia Adotiva , Neoplasias/metabolismo , Microambiente Tumoral
3.
Cancer Sci ; 114(11): 4172-4183, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37675556

RESUMO

Adoptive immunotherapy using genetically engineered patient-derived lymphocytes to express tumor-reactive receptors is a promising treatment for malignancy. However, utilization of autologous T cells in this therapy limits the quality of gene-engineered T cells, thereby inhibiting the timely infusion of the cells into patients. In this study, we evaluated the anti-tumor efficacy and the potential to induce graft-versus-host disease (GVHD) in T cell receptor (TCR) gene-engineered allogeneic T cells that downregulate the endogenous TCR and HLA class I molecules with the aim of developing an "off-the-shelf" cell product with expanded application of genetically engineered T cells. We transduced human lymphocytes with a high-affinity TCR specific to the cancer/testis antigen NY-ESO-1 using a novel retrovirus vector with siRNAs specific to the endogenous TCR (siTCR vector). These T cells showed reduced expression of endogenous TCR and minimized reactivity to allogeneic cells in vitro. In non-obese diabetic/SCID/γcnull mice, TCR gene-transduced T cells induced tumor regression without development of GVHD. A lentivirus-based CRISPR/Cas9 system targeting ß-2 microglobulin in TCR gene-modified T cells silenced the HLA class I expression and prevented allogeneic CD8+ T cell stimulation without disrupting their anti-tumor capacity. This report is the first demonstration that siTCR technology is effective in preventing GVHD. Adoptive cell therapy with allogeneic T cells engineered with siTCR vector may be useful in developing an "off-the-shelf" therapy for patients with malignancy.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Camundongos , Animais , Humanos , RNA Interferente Pequeno/genética , Células Alógenas/metabolismo , Camundongos SCID , Receptores de Antígenos de Linfócitos T , Genes Codificadores dos Receptores de Linfócitos T , Imunoterapia Adotiva , Neoplasias/genética , Doença Enxerto-Hospedeiro/prevenção & controle
4.
Sci Rep ; 13(1): 13033, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563266

RESUMO

Emerging SARS-CoV-2 Omicron variants are highly contagious with enhanced immune escape mechanisms against the initially approved COVID-19 vaccines. Therefore, we require stable alternative-platform vaccines that confer protection against newer variants of SARS-CoV-2. We designed an Omicron B.1.1.529 specific DNA vaccine using our DNA vaccine platform and evaluated the humoral and cellular immune responses. SD rats intradermally administered with Omicron-specific DNA vaccine via pyro-drive jet injector (PJI) thrice at 2-week intervals elicited high antibody titers against the Omicron subvariants as well as the ancestral strain. Indeed, the Omicron B.1.1.529-specific antibody titer and neutralizing antibody were higher than that of other strains. Longitudinal monitoring indicated that anti-spike (ancestral and Omicron) antibody titers decreased toward 30 weeks after the first vaccination dose. However, neutralization activity remained unaltered. Germinal center formation was histologically detected in lymph nodes in rats immunized with Omicron DNA vaccine. Ancestral spike-specific immune cell response was slightly weaker than Omicron spike-specific response in splenocytes with Omicron-adapted DNA vaccine, evaluated by ELISpot assay. Collectively, our findings suggest that Omicron targeting DNA vaccines via PJI can elicit robust durable antibody production mediated by germinal center reaction against this new variant as well as partially against the spike protein of other SARS-CoV-2 variants.


Assuntos
COVID-19 , Vacinas de DNA , Animais , Humanos , Ratos , Ratos Sprague-Dawley , Anticorpos Neutralizantes , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Centro Germinativo , Anticorpos Antivirais
5.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446055

RESUMO

The benefits of CAR-T therapy could be expanded to the treatment of solid tumors through the use of derived autologous αß T cell, but clinical trials of CAR-T therapy for patients with solid tumors have so far been disappointing. CAR-T therapy also faces hurdles due to the time and cost intensive preparation of CAR-T cell products derived from patients as such CAR-T cells are often poor in quality and low in quantity. These inadequacies may be mitigated through the use of third-party donor derived CAR-T cell products which have a potent anti-tumor function but a constrained GVHD property. Vγ9Vδ2 TCR have been shown to exhibit potent antitumor activity but not alloreactivity. Therefore, in this study, CAR-T cells were prepared from Vγ9Vδ2 T (CAR-γδ T) cells which were expanded by using a novel prodrug PTA. CAR-γδ T cells suppressed tumor growth in an antigen specific manner but only during a limited time window. Provision of GITR co-stimulation enhanced anti-tumor function of CAR-γδ T cells. Our present results indicate that, while further optimization of CAR-γδ T cells is necessary, the present results demonstrate that Vγ9Vδ2 T cells are potential source of 'off-the-shelf' CAR-T cell products for successful allogeneic adoptive immunotherapy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Pró-Fármacos , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Difosfonatos , Receptores de Antígenos de Linfócitos T gama-delta , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Linfócitos T , Imunoterapia
6.
iScience ; 26(4): 106487, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37096037

RESUMO

Adeno-associated virus (AAV) vectors are promising tools for gene therapy. The current AAV vector system produces an abundance of empty capsids that are eliminated before clinical use, leading to increased costs for gene therapy. In the present study, we established an AAV production system that regulates the timing of capsid expression using a tetracycline-dependent promoter. Tetracycline-regulating capsid expression increased viral yield and reduced empty capsids in various serotypes without altering AAV vector infectivity in vitro and in vivo. The replicase expression pattern change observed in the developed AAV vector system improved viral quantity and quality, whereas timing control of capsid expression reduced empty capsids. These findings provide a new perspective on the development of AAV vector production systems in gene therapy.

7.
Cancers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765558

RESUMO

Chimeric antigen receptor engineered T cell (CAR-T) therapy has high therapeutic efficacy against blood cancers, but it has not shown satisfactory results in solid tumors. Therefore, we examined the therapeutic effect of CAR-T therapy targeting carcinoembryonic antigen (CEA) in pancreatic adenocarcinoma (PDAC). CEA expression levels on the cell membranes of various PDAC cell lines were evaluated using flow cytometry and the cells were divided into high, medium, and low expression groups. The relationship between CEA expression level and the antitumor effect of anti-CEA-CAR-T was evaluated using a functional assay for various PDAC cell lines; a significant correlation was observed between CEA expression level and the antitumor effect. We created orthotopic PDAC xenograft mouse models and injected with anti-CEA-CAR-T; only the cell line with high CEA expression exhibited a significant therapeutic effect. Thus, the therapeutic effect of CAR-T therapy was related to the target antigen expression level, and the further retrospective analysis of pathological findings from PDAC patients showed a correlation between the intensity of CEA immunostaining and tumor heterogeneity. Therefore, CEA expression levels in biopsies or surgical specimens can be clinically used as biomarkers to select PDAC patients for anti-CAR-T therapy.

8.
Sci Rep ; 12(1): 20923, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463322

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic. New technologies have been utilized to develop several types of vaccines to prevent the spread of SARS-CoV-2 infection, including mRNA vaccines. Our group previously developed an effective DNA-based vaccine. However, emerging SARS-CoV-2 variants of concern (VOCs), such as the delta variant, have escaped mutations against vaccine-induced neutralizing antibodies. This suggests that modified vaccines accommodating VOCs need to be developed promptly. Here, we first modified the current DNA vaccine to enhance antigenicity. Compared with the parental DNA vaccine, the modified version (GP∆-DNA vaccine) induced rapid antibody production. Next, we updated the GP∆-DNA vaccine to spike glycoprotein of the delta variant (GP∆-delta DNA vaccine) and compared the efficacy of different injection routes, namely intramuscular injection using a needle and syringe and intradermal injection using a pyro-drive jet injector (PJI). We found that the levels of neutralizing antibodies induced by the intradermal PJI injection were higher than intramuscular injection. Furthermore, the PJI-injected GP∆-delta DNA vaccine effectively protected human angiotensin-converting enzyme 2 (hACE2) knock-in mice from delta-variant infection. These results indicate that the improved DNA vaccine was effective against emerging VOCs and was a potential DNA vaccine platform for future VOCs or global pandemics.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Imunidade Humoral , Vacinas de DNA/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes
9.
Immunol Med ; 45(4): 251-264, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36001011

RESUMO

There is an urgent need to stop the coronavirus disease 2019 (COVID-19) pandemic through the development of efficient and safe vaccination methods. Over the short term, plasmid DNA vaccines can be developed as they are molecularly stable, thus facilitating easy transport and storage. pVAX1-SARS-CoV2-co was designed for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) S protein. The antibodies produced led to immunoreactions against the S protein, an anti-receptor-binding-domain, and a neutralizing action of the pVAX1-SARS-CoV2-co, as previously confirmed. To promote the efficacy of the pVAX1-SARS-CoV2-co vaccine a pyro-drive jet injector (PJI) was used. An intradermally adjusted PJI demonstrated that the pVAX1-SARS-CoV2-co vaccine injection caused a high production of anti-S protein antibodies, triggered immunoreactions, and neutralized the actions against SARS-CoV-2. A high-dose pVAX1-SARS-CoV2-co intradermal injection using PJI did not cause any serious disorders in the rat model. A viral challenge confirmed that intradermally immunized mice were potently protected from COVID-19. A pVAX1-SARS-CoV2-co intradermal injection using PJI is a safe and promising vaccination method for overcoming the COVID-19 pandemic.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Camundongos , Humanos , Ratos , Animais , COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2 , RNA Viral , Roedores , Anticorpos Antivirais , Vacinação/métodos , Formação de Anticorpos , Plasmídeos
10.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35768164

RESUMO

BACKGROUND: Because of the shortage of ideal cell surface antigens, the development of T-cell receptor (TCR)-engineered T cells (TCR-T) that target intracellular antigens such as NY-ESO-1 is a promising approach for treating patients with solid tumors. However, endogenous TCRs in vector-transduced T cells have been suggested to impair cell-surface expression of transduced TCR while generating mispaired TCRs that can become self-reactive. METHODS: We conducted a first-in-human phase I clinical trial with the TCR-transduced T-cell product (TBI-1301) in patients with NY-ESO-1-expressing solid tumors. In manufacturing TCR-T cells, we used a novel affinity-enhanced NY-ESO-1-specific TCR that was transduced by a retroviral vector that enables siRNA (small interfering RNA)-mediated silencing of endogenous TCR. The patients were divided into two cohorts. Cohort 1 was given a dose of 5×108 cells (whole cells including TCR-T cells) preconditioned with 1500 mg/m2 cyclophosphamide. Cohort 2 was given 5× 109 cells preconditioned with 1500 mg/m2 cyclophosphamide. RESULTS: In vitro study showed that both the CD8+ and CD4+ T fractions of TCR-T cells exhibited cytotoxic effects against NY-ESO-1-expressing tumor cells. Three patients and six patients were allocated to cohort 1 and cohort 2, respectively. Three of the six patients who received 5×109 cells showed tumor response, while three patients developed early-onset cytokine release syndrome (CRS). One of the patients developed a grade 3 lung injury associated with the infiltration of the TCR-T cells. No siRNA-related adverse events other than CRS were observed. Cytokines including interleukin 6 I and monocyte chemotactic protein-1/chemokine (C-C motif) ligand (CCL2)increased in the sera of patients with CRS. In vitro analysis showed these cytokines were not secreted from the T cells infused. A significant fraction of the manufactured T cells in patients with CRS was found to express either CD244, CD39, or both at high levels. CONCLUSIONS: The trial showed that endogenous TCR-silenced and affinity-enhanced NY-ESO-1 TCR-T cells were safely administered except for grade 3 lung injury. The TCR-T cell infusion exhibited significant tumor response and early-onset CRS in patients with tumors that express NY-ESO-1 at high levels. The differentiation properties of the manufactured T cells may be prognostic for TCR-T-related CRS. TRIAL REGISTRATION NUMBER: NCT02366546.


Assuntos
Síndrome da Liberação de Citocina , Imunoterapia , Neoplasias , Receptores de Antígenos de Linfócitos T , Linfócitos T , Antígenos de Neoplasias , Ciclofosfamida , Síndrome da Liberação de Citocina/terapia , Citocinas/metabolismo , Humanos , Proteínas de Membrana , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia
11.
Curr Res Transl Med ; 70(4): 103348, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35489099

RESUMO

To fight against the worldwide COVID-19 pandemic, the development of an effective and safe vaccine against SARS-CoV-2 is required. As potential pandemic vaccines, DNA/RNA vaccines, viral vector vaccines and protein-based vaccines have been rapidly developed to prevent pandemic spread worldwide. In this study, we designed plasmid DNA vaccine targeting the SARS-CoV-2 Spike glycoprotein (S protein) as pandemic vaccine, and the humoral, cellular, and functional immune responses were characterized to support proceeding to initial human clinical trials. After intramuscular injection of DNA vaccine encoding S protein with alum adjuvant (three times at 2-week intervals), the humoral immunoreaction, as assessed by anti-S protein or anti-receptor-binding domain (RBD) antibody titers, and the cellular immunoreaction, as assessed by antigen-induced IFNγ expression, were up-regulated. In IgG subclass analysis, IgG2b was induced as the main subclass. Based on these analyses, DNA vaccine with alum adjuvant preferentially induced Th1-type T cell polarization. We confirmed the neutralizing action of DNA vaccine-induced antibodies by a binding assay of RBD recombinant protein with angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, and neutralization assays using pseudo-virus, and live SARS-CoV-2. Further B cell epitope mapping analysis using a peptide array showed that most vaccine-induced antibodies recognized the S2 and RBD subunits. Finally, DNA vaccine protected hamsters from SARS-CoV-2 infection. In conclusion, DNA vaccine targeting the spike glycoprotein of SARS-CoV-2 might be an effective and safe approach to combat the COVID-19 pandemic.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Humanos , SARS-CoV-2 , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais
12.
Clin Transl Immunology ; 9(10): e1194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101677

RESUMO

OBJECTIVES: A better understanding of antitumor immunity will help predict the prognosis of gastric cancer patients and tailor the appropriate therapies in each patient. Therefore, we propose a novel immunological classification of gastric cancer. METHODS: We performed whole-exome sequencing (WES), RNA-Seq and flow cytometry in 29 gastric cancer patients who received surgery. The TCGA data set of 323 gastric cancer patients and RNA-Seq data of 45 patients who received pembrolizumab (Kim et al. Nat Med 2018; 24: 1449-1458) were also analysed. RESULTS: Immunogram analysis of cancer-immunity interaction of gastric cancer revealed immune signatures of four main types, designated Hot1, Hot2, Intermediate and Cold. Immunologically hot tumors displayed a dysfunctional T-cell signature, while cold tumors had an exclusion signature. Ex vivo tumor-infiltrating lymphocyte analysis documented T-cell dysfunction with the expression of checkpoint molecules and impaired cytokine production. The T-cell function was more profoundly damaged in Hot1 than Hot2 tumors. Patients in Hot2 subtypes had better survival in our cohort and TCGA cohort. Although these immunological subtypes overlapped to some degree with the molecular subtypes in the TCGA, intratumoral immune responses cannot be predicted solely based on histological or molecular subtyping of gastric cancer. Molecular and immunological classifications complement each other to predict the responses to anti-PD-1 therapy and have the potential to be a biomarker for the treatment of gastric cancer. CONCLUSION: The immunological classification of gastric cancer resulted in four subtypes. Hot tumors were further divided into two subtypes, between which the functional status of T cells was different.

13.
Biochem Biophys Res Commun ; 530(3): 597-602, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32747090

RESUMO

The current antiretroviral therapy cannot cure the patients infected with human immunodeficiency virus type 1 (HIV-1) due to the existence of latently infected cells capable of virus production from harboring proviral DNA. MazF is an ACA nucleotide sequence-specific endoribonuclease derived from Escherichia coli. The conditional expression of MazF by binding of HIV-1 Tat to the promoter region of a MazF-expression vector has previously been shown to selectively inhibit HIV-1 replication in acutely infected cells. The expression of MazF significantly suppressed tumor necrosis factor (TNF)-α-induced HIV-1 production and viral RNA expression in the HIV-1 latently infected cell line OM-10.1 transduced with the MazF-expression vector (OM-10.1/MFR). Moreover, the viability of OM-10.1/MFR cells decreased with increasing concentrations of TNF-α, whereas such decrease was not observed for HL-60 cells transduced with the MazF-expression vector (HL-60/MFR), the uninfected parental cell line of OM-10.1. TNF-α increased the expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase in OM-10.1/MFR cells, indicating that the cell death was caused by the induction of apoptosis. TNF-α-induced expression of MazF mRNA was detected in OM-10.1/MFR but not HL-60/MFR cells, suggesting that TNF-α-induced apoptosis of latently infected cells was due to the expression of MazF. Thus, the anti-HIV-1 gene therapy using the MazF-expression vector may have potential for the cure of HIV-1 infection in combination with suitable latency reversing agents through reducing the size of latently infected cells without viral reactivation.


Assuntos
Proteínas de Ligação a DNA/genética , Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Terapia Genética , Infecções por HIV/terapia , HIV-1/fisiologia , Latência Viral , Apoptose , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Infecções por HIV/genética , Infecções por HIV/virologia , Células HL-60 , Humanos , Ativação Transcricional , Transdução Genética , Replicação Viral
14.
Biol Blood Marrow Transplant ; 26(8): 1377-1385, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32311478

RESUMO

Adult T cell leukemia/lymphoma (ATL) is an aggressive peripheral T cell neoplasm caused by infection with human T cell lymphotropic virus type-1 (HTLV-1). Its prognosis remains extremely poor. Tax, the most important regulatory protein for HTLV-1, is associated with the aggressive proliferation of host cells and is also a major target antigen for CD8+ cytotoxic T cells (CTLs). Based on our previous findings that Tax-specific CTLs with a T cell receptor (TCR) containing a unique amino-acid sequence motif exhibit strong HLA-A*24:02-restricted, Tax301-309-specific activity against HTLV-1, we aimed to develop a Tax-redirected T cell immunotherapy for ATL. TCR-ɑ/ß genes were cloned from a previously established CTL clone and transduced into peripheral blood mononuclear cells (PBMCs) of healthy volunteers using a retroviral siTCR vector. Then the cytotoxic efficacy against HTLV-1-infected T cells or primary ATL cells was assessed both in vitro and in vivo. The redirected CTLs (Tax-siCTLs) produced a large amount of cytokines and showed strong killing activity against ATL/HTLV-1-infected T cells in vitro, although they did not have universal activity against ATL cells. Next, in a xenograft mouse model using an HTLV-1-infected T cell line (MT-2), in all mice treated with Tax-siCTLs, the tumor rapidly diminished and finally disappeared without normal tissue damage, although all mice that were untreated or treated with non-gene-modified PBMCs died because of tumor progression. Our findings confirm that Tax-siCTLs can exert strong anti-ATL/HTLV-1 effects without a significant reaction against normal cells and have the potential to be a novel immunotherapy for ATL patients.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Adulto , Animais , Produtos do Gene tax/genética , Genes Codificadores dos Receptores de Linfócitos T , Humanos , Imunoterapia , Leucemia-Linfoma de Células T do Adulto/terapia , Leucócitos Mononucleares , Camundongos , Linfócitos T Citotóxicos
15.
Hum Gene Ther Methods ; 30(4): 137-143, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31317781

RESUMO

Recombinant adeno-associated virus (rAAV) is a promising gene delivery vehicle that has been approved as a gene therapy drug for some genetic disorders, and is being evaluated in clinical trials. To further promote clinical research under the Food and Drug Administration Investigational New Drug application, the stability of rAAV must be assessed under various conditions. However, there is scant data concerning the stability of a variety of rAAV serotypes. We hypothesized that the difference of capsid structure causes differences in stability. To investigate this hypothesis, rAAV serotypes (rAAV1, rAAV2, rAAV8, and rAAV9) were exposed to diluents and various environmental conditions, including ultraviolet (UV) irradiation, 0.1 M sodium hydroxide (NaOH), 0.06% sodium hypochlorite (NaClO), tap water, and 70% ethanol (EtOH). The changes of the infectivity of the treated samples were assessed by transduction in HeLaRC32 cells as a criterion of stability. The infectivity between recombinant and wild-type AAV (wtAAV2) was also analyzed. The activity of all rAAV serotypes was weakened by UV irradiation and NaOH and NaClO exposure. Treatment for 10 days with tap water or 70% EtOH did not appreciably inactivate rAAV1, rAAV8, and rAAV9, but did affect the activity of rAAV2. Furthermore, the infectivity of rAAV2 did not surpass wtAAV2 infectivity. The results will be important for clinical studies for gene therapy using rAAV.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/efeitos dos fármacos , Dependovirus/genética , Dependovirus/patogenicidade , Dependovirus/efeitos da radiação , Terapia Genética , Células HEK293 , Humanos , Hidróxido de Sódio/farmacologia , Hipoclorito de Sódio/farmacologia , Raios Ultravioleta , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação , Água/farmacologia
16.
Sci Rep ; 9(1): 4811, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886178

RESUMO

Target-specific genome editing using engineered nucleases has become widespread in various fields. Long gene knock-in and single-base substitutions can be performed by homologous recombination (HR), but the efficiency is usually very low. To improve the efficiency of knock-in with single-stranded oligo DNA nucleotides (ssODNs), we have investigated optimal design of ssODNs in terms of the blocking mutation, orientation, size, and length of homology arms to explore the optimal parameters of ssODN design using reporter systems for the detection of single-base substitutions. We have also investigated the difference in knock-in efficiency among the delivery forms and methods of Cas9 and sgRNA. The knock-in efficiencies for optimized ssODNs were much higher than those for ssODNs with no blocking mutation. We have also demonstrated that Cas9 protein/sgRNA ribonucleoprotein complexes (Cas9-RNPs) can dramatically reduce the re-cutting of the edited sites.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Técnicas de Introdução de Genes/métodos , Ribonucleoproteínas/genética , Sequência de Bases/genética , Técnicas de Cultura de Células/métodos , DNA de Cadeia Simples/genética , Estudos de Viabilidade , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Oligonucleotídeos/genética , RNA Guia de Cinetoplastídeos/genética , Transfecção/métodos
17.
Mol Ther Oncolytics ; 12: 16-25, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30662937

RESUMO

Adoptive transfer of T cells expressing a chimeric antigen receptor (CAR) is a promising cell-based anticancer therapy. Although clinical studies of this approach show therapeutic efficacy, additional genetic modification is necessary to enhance the efficacy and safety of CAR-T cells. For example, production of an antitumor cytokine from CAR-T cells can potentially enhance their tumor-killing activity, but there are concerns that constitutive expression of anticancer molecules will cause systemic side effects. Therefore, it is important that exogenous gene expression is confined to the tumor locality. Here, we aimed to develop an inducible promoter driven by activation signals from a CAR. Transgene expression in T cells transduced with the CD19-targeted CAR and an inducible promoter, including inducible reporter genes (CAR-T/iReporter), was only induced strongly by co-culture with CD19-positive target cells. CAR-T/iReporter cells also showed redirected cytolysis toward CD19-positive, but not CD19-negative, tumor cells. Overall, our study indicated that the inducible promoter was selectively driven by activation signals from the CAR, and transduction with the inducible promoter did not affect original effector activities including interleukin-2 and interferon-γ production and the antitumor activity of CAR-redirected cytotoxic T lymphocytes. Moreover, this inducible promoter permits visualization and quantification of the activation status in CAR-T cells.

18.
Mol Ther Methods Clin Dev ; 11: 180-190, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30533449

RESUMO

Recombinant adeno-associated virus serotype 9 (rAAV9) can specifically transduce muscle and neuronal tissues; thus, rAAV9 can potentially be used in gene therapy. However, rAAV9 is the most challenging rAAV serotype to purify. Traditionally, rAAV9 has been purified by ultracentrifugation, which is not scalable. We recently described a chromatographic purification protocol for rAAV1; this protocol can achieve scalable purifications. In this study, we attempted to optimize this protocol for purifying rAAV9 preparations, and we developed a novel, effective method for high-yield purification of rAAV9 using quaternary ammonium anion exchangers and size-exclusion chromatography. The final purified rAAV9 contained mainly three capsid proteins, as observed by SDS-PAGE. Furthermore, negative-stain electron microscopy demonstrated that 96.1% ± 1.1% of rAAV9 particles carried the viral genome containing the EGFP transgene, indicating that impurities and empty capsids can be eliminated with our purification protocol. The final rAAV9 titer obtained by our protocol totaled 2.5 ± 0.4 × 1015 viral genomes produced from ∼3.2 × 109 HEK293EB cells. We confirmed that our protocol can also be applied to purify other varied AAV genome constructs. Our protocol can scale up production of pure rAAV9, in compliance with current good manufacturing practice, for clinical applications in human gene therapy.

19.
Blood ; 132(11): 1134-1145, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30045840

RESUMO

The recent success of chimeric antigen receptor (CAR)-T cell therapy for treatment of hematologic malignancies supports further development of treatments for both liquid and solid tumors. However, expansion of CAR-T cell therapy is limited by the availability of surface antigens specific for the tumor while sparing normal cells. There is a rich diversity of tumor antigens from intracellularly expressed proteins that current and conventional CAR-T cells are unable to target. Furthermore, adoptively transferred T cells often suffer from exhaustion and insufficient expansion, in part, because of the immunosuppressive mechanisms operating in tumor-bearing hosts. Therefore, it is necessary to develop means to further activate and expand those CAR-T cells in vivo. The Wilms tumor 1 (WT1) is an intracellular oncogenic transcription factor that is an attractive target for cancer immunotherapy because of its overexpression in a wide range of leukemias and solid tumors, and a low level of expression in normal adult tissues. In the present study, we developed CAR-T cells consisting of a single chain variable fragment (scFv) specific to the WT1235-243/HLA-A*2402 complex. The therapeutic efficacy of our CAR-T cells was demonstrated in a xenograft model, which was further enhanced by vaccination with dendritic cells (DCs) loaded with the corresponding antigen. This enhanced efficacy was mediated, at least partly, by the expansion and activation of CAR-T cells. CAR-T cells shown in the present study not only demonstrate the potential to expand the range of targets available to CAR-T cells, but also provide a proof of concept that efficacy of CAR-T cells targeting peptide/major histocompatibility complex can be boosted by vaccination.


Assuntos
Imunidade Celular , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Vacinação , Proteínas WT1/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/patologia , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Int J Cancer ; 142(12): 2599-2609, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29388200

RESUMO

Natural killer (NK) cells exhibit strong cytotoxic activity against tumor cells without prior sensitization, and have the potential to exert antibody-dependent cellular cytotoxicity (ADCC). In this clinical trial, we examined the safety and efficacy of the use of NK cells, generated using a novel expansion system, in combination with IgG1 antibodies for the treatment of advanced gastric or colorectal cancers. Treatment consisted of trastuzumab- or cetuximab-based chemotherapy, plus adoptive NK cell therapy. For administration of expanded NK cells, dose escalation with a sequential 3 + 3 design was performed in three steps, at doses of 0.5 × 109 , 1.0 × 109 , and 2.0 × 109 cells/injection (N = 9). After 3 days of IgG1 antibody administration, patients were infused with expanded NK cells three times at triweekly intervals. NK cell populations expanded with our system were confirmed as being enriched in NK cells (median 92.9%) with high expression of NKG2D (97.6%) and CD16 (69.6%). The combination therapy was very well tolerated with no severe adverse events. Among six evaluable patients, four presented stable disease (SD) and two presented progressive disease. Of the four SD patients, three showed an overall decrease in tumor size after combination therapy. Immune monitoring suggested that combination therapy enhanced whole blood IFN-γ production and reduced peripheral regulatory T cells (Tregs). In conclusion, this phase I trial provides evidence of good tolerability, induction of Th1 immune responses, and preliminary anti-tumor activity for this combination therapy, in patients with advanced gastric and colorectal cancer that have received previous therapy.


Assuntos
Neoplasias Colorretais/terapia , Imunoglobulina G/uso terapêutico , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/transplante , Neoplasias Gástricas/terapia , Adulto , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cetuximab/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Trastuzumab/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA