Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073546

RESUMO

STING gain-of-function mutations cause STING-associated vasculopathy with onset in infancy (SAVI) in humans, a disease characterized by spontaneous lung inflammation and fibrosis. Mice with STING gain-of-function mutations (SAVI mice) develop αß T cell-dependent lung disease and also lack lymph nodes. Although SAVI has been regarded as a type I interferonopathy, the relative contributions of the three interferon receptors are incompletely understood. Here, we show that STING gain of function led to upregulation of IFN-γ-induced chemokines in the lungs of SAVI mice and that deletion of the type II IFN receptor (IFNGR1), but not the type I IFN receptor (IFNAR1) or type III IFN receptor (IFNλR1), ameliorated lung disease and restored lymph node development in SAVI mice. Furthermore, deletion of IFNGR1, but not IFNAR1 or IFNλR1, corrected the ratio of effector to Tregs in SAVI mice and in mixed bone marrow chimeric mice. Finally, cultured SAVI mouse macrophages were hyperresponsive to IFN-γ, but not IFN-ß, in terms of Cxcl9 upregulation and cell activation. These results demonstrate that IFNGR1 plays a major role in autoinflammation and immune dysregulation mediated by STING gain of function.


Assuntos
Pneumopatias , Doenças Vasculares , Animais , Mutação com Ganho de Função , Humanos , Pulmão , Proteínas de Membrana/genética , Camundongos , Linfócitos T , Doenças Vasculares/genética
2.
Cell Rep ; 35(6): 109113, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979608

RESUMO

STING modulates immunity by responding to bacterial and endogenous cyclic dinucleotides (CDNs). Humans and mice with STING gain-of-function mutations develop a syndrome known as STING-associated vasculopathy with onset in infancy (SAVI), which is characterized by inflammatory or fibrosing lung disease. We hypothesized that hyperresponsiveness of gain-of-function STING to bacterial CDNs might explain autoinflammatory lung disease in SAVI mice. We report that depletion of gut microbes with oral antibiotics (vancomycin, neomycin, and ampicillin [VNA]) nearly eliminates lung disease in SAVI mice, implying that gut microbes might promote STING-associated autoinflammation. However, we show that germ-free SAVI mice still develop severe autoinflammatory disease and that transferring gut microbiota from antibiotics-treated mice to germ-free animals eliminates lung inflammation. Depletion of anaerobes with metronidazole abolishes the protective effect of the VNA antibiotics cocktail, and recolonization with the metronidazole-sensitive anaerobe Bacteroides thetaiotaomicron prevents disease, confirming a protective role of a metronidazole-sensitive microbe in a model of SAVI.


Assuntos
Microbioma Gastrointestinal/fisiologia , Pneumopatias/fisiopatologia , Animais , Humanos , Camundongos , Mutação , Transdução de Sinais
3.
Cell Rep ; 31(11): 107771, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553167

RESUMO

STING gain-of-function causes autoimmunity and immunodeficiency in mice and STING-associated vasculopathy with onset in infancy (SAVI) in humans. Here, we report that STING gain-of-function in mice prevents development of lymph nodes and Peyer's patches. We show that the absence of secondary lymphoid organs is associated with diminished numbers of innate lymphoid cells (ILCs), including lymphoid tissue inducer (LTi) cells. Although wild-type (WT) α4ß7+ progenitors differentiate efficiently into LTi cells, STING gain-of-function progenitors do not. Furthermore, STING gain-of-function impairs development of all types of ILCs. Patients with STING gain-of-function mutations have fewer ILCs, although they still have lymph nodes. In mice, expression of the STING mutant in RORγT-positive lineages prevents development of lymph nodes and reduces numbers of LTi cells. RORγT lineage-specific expression of STING gain-of-function also causes lung disease. Since RORγT is expressed exclusively in LTi cells during fetal development, our findings suggest that STING gain-of-function prevents lymph node organogenesis by reducing LTi cell numbers in mice.


Assuntos
Diferenciação Celular/imunologia , Imunidade Inata/imunologia , Linfonodos/imunologia , Linfócitos/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Mutação com Ganho de Função/imunologia , Tecido Linfoide/imunologia , Camundongos , Organogênese/imunologia
4.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315996

RESUMO

Autosomal dominant STAT1 mutations in humans have been associated with chronic mucocutaneous candidiasis (CMC), as well as with increased susceptibility to herpesvirus infections. Prior studies have focused on mucosal and Th17-mediated immunity against Candida, but mechanisms of impaired antiviral immunity have not previously been examined. To begin to explore the mechanisms of STAT1-associated immunodeficiency against herpesviruses, we generated heterozygous STAT1 R274W knock-in mice that have a frequently reported STAT1 mutation associated in humans with susceptibility to herpesvirus infections. In primary macrophages and fibroblasts, we found that STAT1 R274W had no appreciable effect on cell-intrinsic immunity against herpes simplex virus 1 (HSV-1) or gammaherpesvirus 68 (γHV68) infection. However, intraperitoneal inoculation of mice with γHV68 was associated with impaired control of infection at day 14 in STAT1 R274W mice compared with that in wild-type (WT) littermate control animals. Infection of STAT1 R274W mice was associated with paradoxically decreased expression of IFN-stimulated genes (ISGs) and gamma interferon (IFN-γ), likely secondary to defective CD4+ and CD8+ T cell responses, including diminished numbers of antigen-specific CD8+ T cells. Viral pathogenesis studies in WT and STAT1 R274W mixed bone marrow chimeric mice revealed that the presence of WT leukocytes was sufficient to limit infection and that antigen-specific STAT1 R274W CD8+ T cell responses were impaired even in the presence of WT leukocytes. Thus, in addition to regulating Th17 responses against Candida, a STAT1 gain-of-function mutant impedes antigen-specific T cell responses against a common gammaherpesvirus in mice.IMPORTANCE Mechanisms of immunodeficiency related to STAT1 gain of function have not been previously studied in an animal model of viral pathogenesis. Using virological and immunological techniques, we examined the immune response to γHV68 in heterozygous mice that have an autosomal dominant mutation in the STAT1 coiled-coil domain (STAT1 R274W). We observed impaired control of infection, which was associated with diminished production of gamma interferon (IFN-γ), fewer effector CD4+ and CD8+ T cells, and a reduction in the number of antigen-specific CD8+ T cells. These findings indicate that a STAT1 gain-of-function mutation limits production of antiviral T cells, likely contributing to immunodeficiency against herpesviruses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Mutação com Ganho de Função , Infecções por Herpesviridae/imunologia , Mutação de Sentido Incorreto , Rhadinovirus/imunologia , Fator de Transcrição STAT1/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/imunologia , Fibroblastos/virologia , Técnicas de Introdução de Genes , Interferon gama/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Fator de Transcrição STAT1/genética
5.
Leukemia ; 33(8): 1978-1995, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30718771

RESUMO

The distinct clinical features of myelofibrosis (MF) have been attributed in part to dysregulated inflammatory cytokine production. Circulating cytokine levels are elevated in MF patients; a subset of which have been shown to be poor prognostic indicators. In this study, cytokine overproduction was examined in MF patient plasma and in MF blood cells ex vivo using mass cytometry. Plasma cytokines measured following treatment with ruxolitinib remained markedly abnormal, indicating that aberrant cytokine production persists despite therapeutic JAK2 inhibition. In MF patient samples, 14/15 cytokines measured by mass cytometry were found to be constitutively overproduced, with the principal cellular source for most cytokines being monocytes, implicating a non-cell-autonomous role for monocyte-derived cytokines impacting disease-propagating stem/progenitor cells in MF. The majority of cytokines elevated in MF exhibited ex vivo hypersensitivity to thrombopoietin (TPO), toll-like receptor (TLR) ligands, and/or tumor necrosis factor (TNF). A subset of this group (including TNF, IL-6, IL-8, IL-10) was minimally sensitive to ruxolitinib. All TPO/TLR/TNF-sensitive cytokines, however, were sensitive to pharmacologic inhibition of NFκB and/or MAP kinase signaling. These results indicate that NFκB and MAP kinase signaling maintain cytokine overproduction in MF, and that inhibition of these pathways may provide optimal control of inflammatory pathophysiology in MF.


Assuntos
Citocinas/biossíntese , Janus Quinases/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , NF-kappa B/fisiologia , Mielofibrose Primária/imunologia , Fatores de Transcrição STAT/fisiologia , Transdução de Sinais/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Monócitos/imunologia , NF-kappa B/antagonistas & inibidores , Nitrilas , Mielofibrose Primária/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas , Trombopoetina/farmacologia , Receptores Toll-Like/fisiologia
6.
J Allergy Clin Immunol ; 144(1): 254-266.e8, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30772497

RESUMO

BACKGROUND: Monogenic interferonopathies are thought to be mediated by type I interferon. For example, a gain-of-function mutation in stimulator of interferon genes (STING; N153S) upregulates type I interferon-stimulated genes and causes perivascular inflammatory lung disease in mice. The equivalent mutation in human subjects also causes lung disease, which is thought to require signaling through the cyclic GMP-AMP synthase (cGAS)-STING pathway and subsequent activation of interferon regulatory factors (IRFs) 3 and 7, type I interferon, and interferon-stimulated genes. OBJECTIVE: We set out to define the roles of cGAS, IRF3, IRF7, the type I interferon receptor (IFN-α and IFN-ß receptor subunit 1 [IFNAR1]), T cells, and B cells in spontaneous lung disease in STING N153S mice. METHODS: STING N153S mice were crossed to animals lacking cGAS, IRF3/IRF7, IFNAR1, adaptive immunity, αß T cells, and mature B cells. Mice were evaluated for spontaneous lung disease. Additionally, bone marrow chimeric mice were assessed for lung disease severity and survival. RESULTS: Lung disease in STING N153S mice developed independently of cGAS, IRF3/IRF7, and IFNAR1. Bone marrow transplantation revealed that certain features of STING N153S-associated disease are intrinsic to the hematopoietic compartment. Recombination-activating gene 1 (Rag1)-/- STING N153S mice that lack adaptive immunity had no lung disease, and T-cell receptor ß chain (Tcrb)-/- STING N153S animals only had mild disease. STING N153S led to a reduction in percentages and numbers of naive and regulatory T cells, as well as an increased frequency of cytokine-producing effector T cells. CONCLUSION: Spontaneous lung disease in STING N153S mice develops independently of type I interferon signaling and cGAS. STING N153S relies primarily on T cells to promote lung disease in mice.


Assuntos
Pneumopatias/imunologia , Proteínas de Membrana/imunologia , Linfócitos T/imunologia , Animais , Linfócitos B/imunologia , Transplante de Medula Óssea , Feminino , Mutação com Ganho de Função , Interferon Tipo I/imunologia , Pulmão/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos Transgênicos , Nucleotidiltransferases/imunologia , Baço/imunologia
7.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463976

RESUMO

We previously generated STING N153S knock-in mice that have a human disease-associated gain-of-function mutation in STING. Patients with this mutation (STING N154S in humans) develop STING-associated vasculopathy with onset in infancy (SAVI), a severe pediatric autoinflammatory disease characterized by pulmonary fibrosis. Since this mutation promotes the upregulation of antiviral type I interferon-stimulated genes (ISGs), we hypothesized that STING N153S knock-in mice may develop more severe autoinflammatory disease in response to a virus challenge. To test this hypothesis, we infected heterozygous STING N153S mice with murine gammaherpesvirus 68 (γHV68). STING N153S mice were highly vulnerable to infection and developed pulmonary fibrosis after infection. In addition to impairing CD8+ T cell responses and humoral immunity, STING N153S also promoted the replication of γHV68 in cultured macrophages. In further support of a combined innate and adaptive immunodeficiency, γHV68 infection was more severe in Rag1-/- STING N153S mice than in Rag1-/- littermate mice, which completely lack adaptive immunity. Thus, a gain-of-function STING mutation creates a combined innate and adaptive immunodeficiency that leads to virus-induced pulmonary fibrosis.IMPORTANCE A variety of human rheumatologic disease-causing mutations have recently been identified. Some of these mutations are found in viral nucleic acid-sensing proteins, but whether viruses can influence the onset or progression of these human diseases is less well understood. One such autoinflammatory disease, called STING-associated vasculopathy with onset in infancy (SAVI), affects children and leads to severe lung disease. We generated mice with a SAVI-associated STING mutation and infected them with γHV68, a common DNA virus that is related to human Epstein-Barr virus. Mice with the human disease-causing STING mutation were more vulnerable to infection than wild-type littermate control animals. Furthermore, the STING mutant mice developed lung fibrosis similar to that of patients with SAVI. These findings reveal that a human STING mutation creates severe immunodeficiency, leading to virus-induced lung disease in mice.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Fibrose Pulmonar/genética , Imunidade Adaptativa/genética , Animais , Mutação com Ganho de Função/genética , Gammaherpesvirinae/metabolismo , Gammaherpesvirinae/fisiologia , Síndromes de Imunodeficiência , Inflamação/genética , Pulmão/virologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(33): E7768-E7775, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061387

RESUMO

The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi-Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases.


Assuntos
Ácidos Graxos/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 2/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Animais , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Doenças Autoimunes do Sistema Nervoso/patologia , Herpes Simples/genética , Herpes Simples/patologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Lipoilação , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Células RAW 264.7
9.
J Exp Med ; 214(11): 3279-3292, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28951494

RESUMO

Patients with stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) develop systemic inflammation characterized by vasculopathy, interstitial lung disease, ulcerative skin lesions, and premature death. Autosomal dominant mutations in STING are thought to trigger activation of IRF3 and subsequent up-regulation of interferon (IFN)-stimulated genes (ISGs) in patients with SAVI. We generated heterozygous STING N153S knock-in mice as a model of SAVI. These mice spontaneously developed inflammation within the lung, hypercytokinemia, T cell cytopenia, skin ulcerations, and premature death. Cytometry by time-of-flight (CyTOF) analysis revealed that the STING N153S mutation caused myeloid cell expansion, T cell cytopenia, and dysregulation of immune cell signaling. Unexpectedly, we observed only mild up-regulation of ISGs in STING N153S fibroblasts and splenocytes and STING N154S SAVI patient fibroblasts. STING N153S mice lacking IRF3 also developed lung disease, myeloid cell expansion, and T cell cytopenia. Thus, the SAVI-associated STING N153S mutation triggers IRF3-independent immune cell dysregulation and lung disease in mice.


Assuntos
Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Doenças Vasculares/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamação/genética , Fator Regulador 3 de Interferon/genética , Pulmão/metabolismo , Pulmão/patologia , Proteínas de Membrana/genética , Camundongos Knockout , Camundongos Transgênicos , Mutação , Pele/metabolismo , Pele/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Doenças Vasculares/genética
10.
J Immunol ; 194(4): 1945-53, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25582853

RESUMO

Because NK cells secrete cytotoxic granules and cytokines that can destroy surrounding cells and help shape the subsequent immune response, they must be kept under tight control. Several mechanisms, at different levels, are in place to control NK cell function. In this study, we describe a novel mechanism regulating NK cell function in which NK cells acquire ligands for activating receptors from target cells by trogocytosis, rendering the NK cells hyporesponsive. In this model, murine NK cells acquire m157, the murine CMV-encoded ligand for the Ly49H-activating receptor, from target cells both in vitro and in vivo. Although acquisition of m157 requires cell-to-cell contact, it does not require the expression of the Ly49H receptor by the NK cell. Acquired m157 protein is expressed on the NK cell surface with a glycosylphosphatidylinisotol linkage and interacts with the Ly49H receptor expressed on the NK cell. This interaction results in blocking the Ly49H receptor that prevents the NK cells from recognizing m157-expressing targets and continuous engagement of the Ly49H-activating receptor, which results in the hyporesponsiveness of the Ly49H(+) NK cell to stimulation through other activating receptors. Thus, NK cell acquisition of a ligand for an activation receptor by trogocytosis renders them hyporesponsive. This mechanism, by which mature NK cell function can be altered, has important implications in regard to how NK cells respond to tumors in specific microenvironments as well as the use of expanded NK cells in treating various malignancies.


Assuntos
Antígenos Virais/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Transferência Adotiva , Animais , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Muromegalovirus/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia
11.
Mol Immunol ; 49(1-2): 367-79, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21963220

RESUMO

Previous data suggested that constitutive expression of the transcription factor Bright (B cell regulator of immunoglobulin heavy chain transcription), normally tightly regulated during B cell differentiation, was associated with autoantibody production. Here we show that constitutive Bright expression results in skewing of mature B lineage subpopulations toward marginal zone cells at the expense of the follicular subpopulation. C57Bl/6 transgenic mice constitutively expressing Bright in B lineage cells generated autoantibodies that were not the result of global increases in immunoglobulin or of breaches in key tolerance checkpoints typically defective in other autoimmune mouse models. Rather, autoimmunity correlated with increased numbers of marginal zone B cells and alterations in the phenotype and gene expression profiles of lymphocytes within the follicular B cell compartment. These data suggest a novel role for Bright in the normal development of mature B cell subsets and in autoantibody production.


Assuntos
Autoanticorpos/biossíntese , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Proteínas de Ligação a DNA/imunologia , Fatores de Transcrição/imunologia , Animais , Formação de Anticorpos/imunologia , Autoanticorpos/imunologia , Autoimunidade/imunologia , Linfócitos B/citologia , Linfócitos B/metabolismo , Western Blotting , Separação Celular , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/citologia , Baço/imunologia , Baço/metabolismo , Fatores de Transcrição/metabolismo
12.
Mol Cell Biol ; 31(5): 1041-53, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21199920

RESUMO

Bright/Arid3a has been characterized both as an activator of immunoglobulin heavy-chain transcription and as a proto-oncogene. Although Bright expression is highly B lineage stage restricted in adult mice, its expression in the earliest identifiable hematopoietic stem cell (HSC) population suggests that Bright might have additional functions. We showed that >99% of Bright(-/-) embryos die at midgestation from failed hematopoiesis. Bright(-/-) embryonic day 12.5 (E12.5) fetal livers showed an increase in the expression of immature markers. Colony-forming assays indicated that the hematopoietic potential of Bright(-/-) mice is markedly reduced. Rare survivors of lethality, which were not compensated by the closely related paralogue Bright-derived protein (Bdp)/Arid3b, suffered HSC deficits in their bone marrow as well as B lineage-intrinsic developmental and functional deficiencies in their peripheries. These include a reduction in a natural antibody, B-1 responses to phosphocholine, and selective T-dependent impairment of IgG1 class switching. Our results place Bright/Arid3a on a select list of transcriptional regulators required to program both HSC and lineage-specific differentiation.


Assuntos
Linfócitos B/citologia , Proteínas de Ligação a DNA/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Linfopoese/genética , Fatores de Transcrição/metabolismo , Animais , Anticorpos/sangue , Linfócitos B/metabolismo , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Células-Tronco Hematopoéticas/metabolismo , Switching de Imunoglobulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilcolina/imunologia , Fosforilcolina/metabolismo , Fatores de Transcrição/genética
13.
Stem Cells ; 28(9): 1560-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20680960

RESUMO

B-cell regulator of immunoglobulin heavy chain transcription (Bright)/ARID3a, an A+T-rich interaction domain protein, was originally discovered in B lymphocyte lineage cells. However, expression patterns and high lethality levels in knockout mice suggested that it had additional functions. Three independent lines of evidence show that functional inhibition of Bright results in increased developmental plasticity. Bright-deficient cells from two mouse models expressed a number of pluripotency-associated gene products, expanded indefinitely, and spontaneously differentiated into cells of multiple lineages. Furthermore, direct knockdown of human Bright resulted in colonies capable of expressing multiple lineage markers. These data suggest that repression of this single molecule confers adult somatic cells with new developmental options.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/deficiência , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes Dominantes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Interferência de RNA , Teratoma/genética , Teratoma/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA