Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; 39(2): e3665, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448192

RESUMO

Estimating a patient-specific computational model's parameters relies on data that is often unreliable and ill-suited for a deterministic approach. We develop an optimization-based uncertainty quantification framework for probabilistic model tuning that discovers model inputs distributions that generate target output distributions. Probabilistic sampling is performed using a surrogate model for computational efficiency, and a general distribution parameterization is used to describe each input. The approach is tested on seven patient-specific modeling examples using CircAdapt, a cardiovascular circulatory model. Six examples are synthetic, aiming to match the output distributions generated using known reference input data distributions, while the seventh example uses real-world patient data for the output distributions. Our results demonstrate the accurate reproduction of the target output distributions, with a correct recreation of the reference inputs for the six synthetic examples. Our proposed approach is suitable for determining the parameter distributions of patient-specific models with uncertain data and can be used to gain insights into the sensitivity of the model parameters to the measured data.


Assuntos
Modelos Estatísticos , Modelagem Computacional Específica para o Paciente , Humanos , Incerteza , Modelos Cardiovasculares
2.
Cardiovasc Eng Technol ; 10(4): 553-567, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31531820

RESUMO

PURPOSE: Patient-specific models of the heart can be used to improve the diagnosis of cardiac diseases, but practical application of these models can be impeded by the computational costs and numerical uncertainties of fitting mechanistic models to clinical measurements from individual patients. Reliable and efficient tuning of these models within clinically appropriate error bounds is a requirement for practical deployment in the time-constrained environment of the clinic. METHODS: We developed an optimization framework to tune parameters of patient-specific mechanistic models using routinely-acquired non-invasive patient data more efficiently than manual methods. We employ a hybrid particle swarm and pattern search optimization algorithm, but the framework can be readily adapted to use other optimization algorithms. RESULTS: We apply the proposed framework to tune full-cycle lumped parameter circulatory models using clinical data. We show that our framework can be easily adapted to optimize cross-species models by tuning the parameters of the same circulation model to four canine subjects. CONCLUSIONS: This work will facilitate the use of biomechanics and circulatory cardiac models in both clinical and research environments by ameliorating the tedious process of manually fitting the parameters.


Assuntos
Imagem de Tensor de Difusão , Insuficiência Cardíaca/diagnóstico por imagem , Hemodinâmica , Imagem Cinética por Ressonância Magnética , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Função Ventricular Esquerda , Idoso , Algoritmos , Animais , Fenômenos Biomecânicos , Terapia de Ressincronização Cardíaca , Cães , Análise de Elementos Finitos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Análise Numérica Assistida por Computador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Especificidade da Espécie
3.
Comput Mech ; 55(6): 1211-1225, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26392645

RESUMO

This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA