Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(12): e12394, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38124258

RESUMO

Macrophages play major roles in the pathophysiology of various neurological disorders, being involved in seemingly opposing processes such as lesion progression and resolution. Yet, the molecular mechanisms that drive their harmful and benign effector functions remain poorly understood. Here, we demonstrate that extracellular vesicles (EVs) secreted by repair-associated macrophages (RAMs) enhance remyelination ex vivo and in vivo by promoting the differentiation of oligodendrocyte precursor cells (OPCs). Guided by lipidomic analysis and applying cholesterol depletion and enrichment strategies, we find that EVs released by RAMs show markedly elevated cholesterol levels and that cholesterol abundance controls their reparative impact on OPC maturation and remyelination. Mechanistically, EV-associated cholesterol was found to promote OPC differentiation predominantly through direct membrane fusion. Collectively, our findings highlight that EVs are essential for cholesterol trafficking in the brain and that changes in cholesterol abundance support the reparative impact of EVs released by macrophages in the brain, potentially having broad implications for therapeutic strategies aimed at promoting repair in neurodegenerative disorders.


Assuntos
Vesículas Extracelulares , Encéfalo , Macrófagos , Diferenciação Celular , Colesterol
2.
Proc Natl Acad Sci U S A ; 119(46): e2120393119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343243

RESUMO

Failure of remyelination underlies the progressive nature of demyelinating diseases such as multiple sclerosis. Why endogenous repair mechanisms frequently fail in these disorders is poorly understood. However, there is now evidence indicating that this is related to an overly inflammatory microenvironment combined with the intrinsic inability of oligodendrocyte precursor cells (OPCs) to differentiate into mature myelinating cells. Previously, we found that phloretin, a flavonoid abundantly present in apples and strawberries, reduces neuroinflammation by driving macrophages toward an antiinflammatory phenotype. Here, we show that phloretin also markedly stimulates remyelination in ex vivo and in vivo animal models. Improved remyelination was attributed to a direct impact of phloretin on OPC maturation and occurred independently from alterations in microglia function and inflammation. We found, mechanistically, that phloretin acts as a direct ligand for the fatty acid sensing nuclear receptor peroxisome proliferator-activated receptor gamma, thereby promoting the maturation of OPCs. Together, our findings indicate that phloretin has proregenerative properties in central nervous system disorders, with potentially broad implications for the development of therapeutic strategies and dietary interventions aimed at promoting remyelination.


Assuntos
Células Precursoras de Oligodendrócitos , Remielinização , Animais , Camundongos , Remielinização/fisiologia , Floretina/farmacologia , Camundongos Endogâmicos C57BL , Oligodendroglia , Diferenciação Celular/fisiologia , Bainha de Mielina
3.
Cell Rep ; 41(6): 111591, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351388

RESUMO

The progressive nature of demyelinating diseases lies in the inability of the central nervous system (CNS) to induce proper remyelination. Recently, we and others demonstrated that a dysregulated innate immune response partially underlies failure of CNS remyelination. Extensive accumulation of myelin-derived lipids and an inability to process these lipids was found to induce a disease-promoting phagocyte phenotype. Hence, restoring the ability of these phagocytes to metabolize and efflux myelin-derived lipids represents a promising strategy to promote remyelination. Here, we show that ApoA-I mimetic peptide 5A, a molecule well known to promote activity of the lipid efflux transporter ABCA1, markedly enhances remyelination. Mechanistically, we find that the repair-inducing properties of 5A are attributable to increased clearance and metabolism of remyelination-inhibiting myelin debris via the fatty acid translocase protein CD36, which is transcriptionally controlled by the ABCA1-JAK2-STAT3 signaling pathway. Altogether, our findings indicate that 5A promotes remyelination by stimulating clearance and degradation of myelin debris.


Assuntos
Doenças Desmielinizantes , Remielinização , Humanos , Remielinização/fisiologia , Bainha de Mielina/metabolismo , Doenças Desmielinizantes/metabolismo , Apolipoproteína A-I/metabolismo , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA