Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Light Sci Appl ; 13(1): 59, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409110

RESUMO

Techniques for high-definition micromanipulations, such as optical tweezers, hold substantial interest across a wide range of disciplines. However, their applicability remains constrained by material properties and laser exposure. And while microfluidic manipulations have been suggested as an alternative, their inherent capabilities are limited and further hindered by practical challenges of implementation and control. Here we show that the iterative application of laser-induced, localized flow fields can be used for the relative positioning of multiple micro-particles, irrespectively of their material properties. Compared to the standing theoretical proposal, our method keeps particles mobile, and we show that their precision manipulation is non-linearly accelerated via the multiplexing of temperature stimuli below the heat diffusion limit. The resulting flow fields are topologically rich and mathematically predictable. They represent unprecedented microfluidic control capabilities that are illustrated by the actuation of humanoid micro-robots with up to 30 degrees of freedom, whose motions are sufficiently well-defined to reliably communicate personal characteristics such as gender, happiness and nervousness. Our results constitute high-definition micro-fluidic manipulations with transformative potential for assembly, micro-manufacturing, the life sciences, robotics and opto-hydraulically actuated micro-factories.

2.
Talanta ; 253: 123937, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179557

RESUMO

Glyphosate is the most widely used herbicide in the world and, in view of its toxicity, there is a quest for easy-to-use, but reliable methods to detect it in water. To address this issue, we realized a simple, rapid, and highly sensitive immunosensor based on gold coated magnetic nanoparticles (MNPs@Au) to detect glyphosate in tap water. Not only the gold shell provided a sensitive optical transduction of the biological signal - through the shift of the local surface plasmon resonance (LSPR) entailed by the nanoparticle aggregation -, but it also allowed us to use an effective photochemical immobilization technique to tether oriented antibodies straight on the nanoparticles surface. While such a feature led to aggregates in which the nanoparticles were at close proximity each other, the magnetic properties of the core offered us an efficient tool to steer the nanoparticles by a rotating magnetic field. As a result, the nanoparticle aggregation in presence of the target could take place at higher rate (enhanced diffusion) with significant improvement in sensitivity. As a matter of fact, the combination of plasmonic and magnetic properties within the same nanoparticles allowed us to realize a colorimetric biosensor with a limit of detection (LOD) of 20 ng∙L-1.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Água , Ouro , Fenômenos Magnéticos
3.
ACS Omega ; 7(41): 36543-36550, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278054

RESUMO

Magnetoresistive (MR) biosensors combine distinctive features such as small size, low cost, good sensitivity, and propensity to be arrayed to perform multiplexed analysis. Magnetic nanoparticles (MNPs) are the ideal target for this platform, especially if modified not only to overcome their intrinsic tendency to aggregate and lack of stability but also to realize an interacting surface suitable for biofunctionalization without strongly losing their magnetic response. Here, we describe an MR biosensor in which commercial MNP clusters were coated with gold nanoparticles (AuNPs) and used to detect human IgG in water using an MR biochip that comprises six sensing regions, each one containing five U-shaped spin valve sensors. The isolated AuNPs (satellites) were stuck onto an aggregate of individual iron oxide crystals (core) so that the resulting core@satellite magnetic particles (CSMPs) could be functionalized by the photochemical immobilization technique-an easy procedure that leads to oriented antibodies immobilized upright onto gold. The morphological, optical, hydrodynamic, magnetic, and surface charge properties of CSMPs were compared with those exhibited by the commercial MNP clusters showing that the proposed coating procedure endows the MNP clusters with stability and ductility without being detrimental to magnetic properties. Eventually, the high-performance MR biosensor allowed us to detect human IgG in water with a detection limit of 13 pM (2 ng mL-1). Given its portability, the biosensor described in this paper lends itself to a point-of-care device; moreover, the features of the MR biochip also make it suitable for multiplexed analysis.

4.
ACS Appl Mater Interfaces ; 14(5): 6417-6427, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089707

RESUMO

A novel double-resonant plasmonic substrate for fluorescence amplification in a chip-based apta-immunoassay is herein reported. The amplification mechanism relies on plasmon-enhanced fluorescence (PEF) effect. The substrate consists of an assembly of plasmon-coupled and plasmon-uncoupled gold nanoparticles (AuNPs) immobilized onto a glass slide. Plasmon-coupled AuNPs are hexagonally arranged along branch patterns whose resonance lies in the red band (∼675 nm). Plasmon-uncoupled AuNPs are sprinkled onto the substrate, and they exhibit a narrow resonance at 524 nm. Numerical simulations of the plasmonic response of the substrate through the finite-difference time-domain (FDTD) method reveal the presence of electromagnetic hot spots mainly confined in the interparticle junctions. In order to realize a PEF-based device for potential multiplexing applications, the plasmon resonances are coupled with the emission peak of 5-carboxyfluorescein (5-FAM) fluorophore and with the excitation/emission peaks of cyanine 5 (Cy5). The substrate is implemented in a malaria apta-immunoassay to detect Plasmodium falciparum lactate dehydrogenase (PfLDH) in human whole blood. Antibodies against Plasmodium biomarkers constitute the capture layer, whereas fluorescently labeled aptamers recognizing PfLDH are adopted as the top layer. The fluorescence emitted by 5-FAM and Cy5 fluorophores are linearly correlated (logarithm scale) to the PfLDH concentration over five decades. The limits of detection are 50 pM (1.6 ng/mL) with the 5-FAM probe and 260 fM (8.6 pg./mL) with the Cy5 probe. No sample preconcentration and complex pretreatments are required. Average fluorescence amplifications of 160 and 4500 are measured in the 5-FAM and Cy5 channel, respectively. These results are reasonably consistent with those worked out by FDTD simulations. The implementation of the proposed approach in multiwell-plate-based bioassays would lead to either signal redundancy (two dyes for a single analyte) or to a simultaneous detection of two analytes by different dyes, the latter being a key step toward high-throughput analysis.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Carbocianinas/química , Fluoresceínas/química , Vidro/química , Humanos , Imunoensaio/métodos , L-Lactato Desidrogenase/sangue , L-Lactato Desidrogenase/imunologia , Limite de Detecção , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/sangue , Proteínas de Protozoários/imunologia , Propriedades de Superfície
5.
Lab Chip ; 21(22): 4330-4351, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34664599

RESUMO

Classically, the need for highly sophisticated instruments with important economic costs has been a major limiting factor for clinical pathology laboratories, especially in developing countries. With the aim of making clinical pathology more accessible, a wide variety of free or economical technologies have been developed worldwide in the last few years. 3D printing and Arduino approaches can provide up to 94% economical savings in hardware and instrumentation in comparison to commercial alternatives. The vast selection of point-of-care-tests (POCT) currently available also limits the need for specific instruments or personnel, as they can be used almost anywhere and by anyone. Lastly, there are dozens of free and libre digital tools available in health informatics. This review provides an overview of the state-of-the-art on cost-effective alternatives with applications in routine clinical pathology laboratories. In this context, a variety of technologies including 3D printing and Arduino, lateral flow assays, plasmonic biosensors, and microfluidics, as well as laboratory information systems, are discussed. This review aims to serve as an introduction to different technologies that can make clinical pathology more accessible and, therefore, contribute to achieve universal health coverage.


Assuntos
Patologia Clínica , Análise Custo-Benefício , Laboratórios , Microfluídica , Testes Imediatos
6.
Mikrochim Acta ; 188(3): 88, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594523

RESUMO

A plasmon-enhanced fluorescence-based antibody-aptamer biosensor - consisting of gold nanoparticles randomly immobilized onto a glass substrate via electrostatic self-assembly - is described for specific detection of proteins in whole blood. Analyte recognition is realized through a sandwich scheme with a capture bioreceptor layer of antibodies - covalently immobilized onto the gold nanoparticle surface in upright orientation and close-packed configuration by photochemical immobilization technique (PIT) - and a top bioreceptor layer of fluorescently labelled aptamers. Such a sandwich configuration warrants not only extremely high specificity, but also an ideal fluorophore-nanostructure distance (approximately 10-15 nm) for achieving strong fluorescence amplification. For a specific application, we tested the biosensor performance in a case study for the detection of malaria-related marker Plasmodium falciparum lactate dehydrogenase (PfLDH). The proposed biosensor can specifically detect PfLDH in spiked whole blood down to 10 pM (0.3 ng/mL) without any sample pretreatment. The combination of simple and scalable fabrication, potentially high-throughput analysis, and excellent sensing performance provides a new approach to biosensing with significant advantages compared to conventional fluorescence immunoassays.


Assuntos
Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , L-Lactato Desidrogenase/sangue , Nanopartículas Metálicas/química , Proteínas de Protozoários/sangue , Anticorpos Imobilizados/imunologia , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Imunoensaio/métodos , L-Lactato Desidrogenase/imunologia , Limite de Detecção , Malária/diagnóstico por imagem , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/imunologia
7.
Nat Commun ; 11(1): 6134, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262332

RESUMO

Development of plasmonic biosensors combining reliability and ease of use is still a challenge. Gold nanoparticle arrays made by block copolymer micelle nanolithography (BCMN) stand out for their scalability, cost-effectiveness and tunable plasmonic properties, making them ideal substrates for fluorescence enhancement. Here, we describe a plasmon-enhanced fluorescence immunosensor for the specific and ultrasensitive detection of Plasmodium falciparum lactate dehydrogenase (PfLDH)-a malaria marker-in whole blood. Analyte recognition is realized by oriented antibodies immobilized in a close-packed configuration via the photochemical immobilization technique (PIT), with a top bioreceptor of nucleic acid aptamers recognizing a different surface of PfLDH in a sandwich conformation. The combination of BCMN and PIT enabled maximum control over the nanoparticle size and lattice constant as well as the distance of the fluorophore from the sensing surface. The device achieved a limit of detection smaller than 1 pg/mL (<30 fM) with very high specificity without any sample pretreatment. This limit of detection is several orders of magnitude lower than that found in malaria rapid diagnostic tests or even commercial ELISA kits. Thanks to its overall dimensions, ease of use and high-throughput analysis, the device can be used as a substrate in automated multi-well plate readers and improve the efficiency of conventional fluorescence immunoassays.


Assuntos
Técnicas Biossensoriais/métodos , Imunoensaio/métodos , L-Lactato Desidrogenase/sangue , Malária Falciparum/sangue , Proteínas de Protozoários/sangue , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/instrumentação , Ouro/química , Humanos , Imunoensaio/instrumentação , L-Lactato Desidrogenase/genética , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Nanopartículas Metálicas/química , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética
8.
ACS Sens ; 5(10): 3043-3048, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32989986

RESUMO

Mass testing is fundamental to face the pandemic caused by the coronavirus SARS-CoV-2 discovered at the end of 2019. To this aim, it is necessary to establish reliable, fast, and cheap tools to detect viral particles in biological material so to identify the people capable of spreading the infection. We demonstrate that a colorimetric biosensor based on gold nanoparticle (AuNP) interaction induced by SARS-CoV-2 lends itself as an outstanding tool for detecting viral particles in nasal and throat swabs. The extinction spectrum of a colloidal solution of multiple viral-target gold nanoparticles-AuNPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 (spike, envelope, and membrane)-is red-shifted in few minutes when mixed with a solution containing the viral particle. The optical density of the mixed solution measured at 560 nm was compared to the threshold cycle (Ct) of a real-time PCR (gold standard for detecting the presence of viruses) finding that the colorimetric method is able to detect very low viral load with a detection limit approaching that of the real-time PCR. Since the method is sensitive to the infecting viral particle rather than to its RNA, the achievements reported here open a new perspective not only in the context of the current and possible future pandemics, but also in microbiology, as the biosensor proves itself to be a powerful though simple tool for measuring the viral particle concentration.


Assuntos
Betacoronavirus/química , Colorimetria/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Mucosa Nasal/virologia , Faringe/virologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Técnicas Biossensoriais , COVID-19 , Ouro , Humanos , Proteínas de Membrana/química , Nanopartículas Metálicas , Pandemias , Fotoquímica , Reação em Cadeia da Polimerase , SARS-CoV-2 , Manejo de Espécimes , Glicoproteína da Espícula de Coronavírus/química , Níveis Máximos Permitidos , Proteínas do Envelope Viral/química
9.
Nanomaterials (Basel) ; 10(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759707

RESUMO

A magnetoelastic (ME) biosensor for wireless detection of analytes in liquid is described. The ME biosensor was tested against human IgG in the range 0-20 µg∙mL-1. The sensing elements, anti-human IgG produced in goat, were immobilized on the surface of the sensor by using a recently introduced photochemical immobilization technique (PIT), whereas a new amplification protocol exploiting gold coated magnetic nanoparticles (core-shell nanoparticles) is demonstrated to significantly enhance the sensitivity. The gold nanoflowers grown on the magnetic core allowed us to tether anti-human IgG to the nanoparticles to exploit the sandwich detection scheme. The experimental results show that the 6 mm × 1 mm × 30 µm ME biosensor with an amplification protocol that uses magnetic nanoparticles has a limit of detection (LOD) lower than 1 nM, works well in water, and has a rapid response time of few minutes. Therefore, the ME biosensor is very promising for real-time wireless detection of pathogens in liquids and for real life diagnostic purpose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA