RESUMO
The biotic exposure and uptake of radionuclides and potential health effects due to breccia pipe uranium mining in the Grand Canyon watershed are largely unknown. This paper describes the use of the RESRAD-BIOTA dose model to assess exposure of small rodents (n = 11) sampled at three uranium mine sites in different stages of ore production (active and postproduction). Rodent tissue and soil concentrations of naturally occurring uranium (U, U, and U), thorium (Th, Th, and Th), and radium (Ra) radioisotopes were used in the dose model. The dose assessment results indicated that the potential internal, external, and total doses to rodents were below the US Department of Energy's biota dose standard of 1 mGy d. As expected, tissue concentrations of U, U, and Th were in approximate equilibrium; however, Ra results in tissue were 1.25 to 5.75 times greater than U, U, and Th tissue results for 10 out of 11 samples. Soil at the three sites also displayed Ra enrichment, so it is likely that the Ra enrichment in the rodents was from soil via typical activities (i.e., burrowing, incidental ingestion, bathing, etc.) or by dietary uptake of translocated Ra. The results suggest that Ra is more mobile in this environment and bioaccumulates in these rodent species (e.g., in bones via the bloodstream). Internal dose accounting suggests that Ra is the radionuclide of most concern for rodent exposure and health.
Assuntos
Mineração/métodos , Monitoramento de Radiação/métodos , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise , Tório/análise , Urânio/análise , Poluentes Radioativos da Água/análise , Animais , Doses de Radiação , RoedoresRESUMO
The U.S. Environmental Protection Agency (EPA) requires the use of the model CAP88 to estimate the total effective dose (TED) to an offsite maximally exposed individual (MEI) for demonstrating compliance with 40 CFR 61, Subpart H: The National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations. For NESHAP compliance at the Savannah River Site (SRS), the EPA, the U.S. Department of Energy (DOE), South Carolina's Department of Health and Environmental Control, and SRS approved a dose assessment method in 1991 that models all radiological emissions as if originating from a generalized center of site (COS) location at two allowable stack heights (0 m and 61 m). However, due to changes in SRS missions, radiological emissions are no longer evenly distributed about the COS. An area-specific simulation of the 2015 SRS radiological airborne emissions was conducted to compare to the current COS method. The results produced a slightly higher dose estimate (2.97 × 10 mSv vs. 2.22 × 10 mSv), marginally changed the overall MEI location, and noted that H-Area tritium emissions dominated the dose. Thus, an H-Area dose model was executed as a potential simplification of the area-specific simulation by adopting the COS methodology and modeling all site emissions from a single location in H-Area using six stack heights that reference stacks specific to the tritium production facilities within H-Area. This "H-Area Tritium Stacks" method produced a small increase in TED estimates (3.03 × 10 mSv vs. 2.97 × 10 mSv) when compared to the area-specific simulation. This suggests that the current COS method is still appropriate for demonstrating compliance with NESHAP regulations but that changing to the H-Area Tritium Stacks assessment method may now be a more appropriate representation of operations at SRS.