Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Matrix Biol ; 121: 41-55, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217119

RESUMO

To assess the contribution of individual TGF-ß isoforms to aortopathy in Marfan syndrome (MFS), we quantified the survival and phenotypes of mice with a combined fibrillin1 (the gene defective in MFS) hypomorphic mutation and a TGF-ß1, 2, or 3 heterozygous null mutation. The loss of TGF-ß2, and only TGF-ß2, resulted in 80% of the double mutant animals dying earlier, by postnatal day 20, than MFS only mice. Death was not from thoracic aortic rupture, as observed in MFS mice, but was associated with hyperplastic aortic valve leaflets, aortic regurgitation, enlarged aortic root, increased heart weight, and impaired lung alveolar septation. Thus, there appears to be a relationship between loss of fibrillin1 and TGF-ß2 in the postnatal development of the heart, aorta and lungs.


Assuntos
Haploinsuficiência , Síndrome de Marfan , Animais , Camundongos , Aorta , Fibrilina-1/genética , Síndrome de Marfan/genética , Fenótipo , Fator de Crescimento Transformador beta2/genética
2.
Circ Arrhythm Electrophysiol ; 16(1): e011466, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36595632

RESUMO

BACKGROUND: Patients with chronic kidney disease (CKD) are at increased risk of developing cardiac arrhythmogenesis and sudden cardiac death; however, the basis for this association is incompletely known. METHODS: Here, using murine models of CKD, we examined interactions between kidney disease progression and structural, electrophysiological, and molecular cardiac remodeling. RESULTS: C57BL/6 mice with adenine supplemented in their diet developed progressive CKD. Electrocardiographically, CKD mice developed significant QT prolongation and episodes of bradycardia. Optical mapping of isolated-perfused hearts using voltage-sensitive dyes revealed significant prolongation of action potential duration with no change in epicardial conduction velocity. Patch-clamp studies of isolated ventricular cardiomyocytes revealed changes in sodium and potassium currents consistent with action potential duration prolongation. Global transcriptional profiling identified dysregulated expression of cellular stress response proteins RBM3 (RNA-binding motif protein 3) and CIRP (cold-inducible RNA-binding protein) that may underlay the ion channel remodeling. Unexpectedly, we found that female sex is a protective factor in the progression of CKD and its cardiac sequelae. CONCLUSIONS: Our data provide novel insights into the association between CKD and pathologic proarrhythmic cardiac remodeling. Cardiac cellular stress response pathways represent potential targets for pharmacologic intervention for CKD-induced heart rhythm disorders.


Assuntos
Insuficiência Renal Crônica , Remodelação Ventricular , Feminino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Modelos Animais de Doenças , Proteínas de Ligação a RNA/metabolismo
4.
Circ Res ; 127(12): 1536-1548, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32962518

RESUMO

RATIONALE: FHFs (fibroblast growth factor homologous factors) are key regulators of sodium channel (NaV) inactivation. Mutations in these critical proteins have been implicated in human diseases including Brugada syndrome, idiopathic ventricular arrhythmias, and epileptic encephalopathy. The underlying ionic mechanisms by which reduced Nav availability in Fhf2 knockout (Fhf2KO) mice predisposes to abnormal excitability at the tissue level are not well defined. OBJECTIVE: Using animal models and theoretical multicellular linear strands, we examined how FHF2 orchestrates the interdependency of sodium, calcium, and gap junctional conductances to safeguard cardiac conduction. METHODS AND RESULTS: Fhf2KO mice were challenged by reducing calcium conductance (gCaV) using verapamil or by reducing gap junctional conductance (Gj) using carbenoxolone or by backcrossing into a cardiomyocyte-specific Cx43 (connexin 43) heterozygous background. All conditions produced conduction block in Fhf2KO mice, with Fhf2 wild-type (Fhf2WT) mice showing normal impulse propagation. To explore the ionic mechanisms of block in Fhf2KO hearts, multicellular linear strand models incorporating FHF2-deficient Nav inactivation properties were constructed and faithfully recapitulated conduction abnormalities seen in mutant hearts. The mechanisms of conduction block in mutant strands with reduced gCaV or diminished Gj are very different. Enhanced Nav inactivation due to FHF2 deficiency shifts dependence onto calcium current (ICa) to sustain electrotonic driving force, axial current flow, and action potential (AP) generation from cell-to-cell. In the setting of diminished Gj, slower charging time from upstream cells conspires with accelerated Nav inactivation in mutant strands to prevent sufficient downstream cell charging for AP propagation. CONCLUSIONS: FHF2-dependent effects on Nav inactivation ensure adequate sodium current (INa) reserve to safeguard against numerous threats to reliable cardiac impulse propagation.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/metabolismo , Fatores de Crescimento de Fibroblastos/deficiência , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Simulação por Computador , Conexina 43/genética , Conexina 43/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Junções Comunicantes/metabolismo , Predisposição Genética para Doença , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Modelos Cardiovasculares , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA