Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920643

RESUMO

Neurodegenerative disorders are affecting millions of people worldwide, impacting the healthcare system of our society. Among them, Alzheimer's disease (AD) is the most common form of dementia, characterized by severe cognitive impairments. Neuropathological hallmarks of AD are ß-amyloid (Aß) plaques and neurofibrillary tangles, as well as endoplasmic reticulum and mitochondria dysfunctions, which finally lead to apoptosis and neuronal loss. Since, to date, there is no definitive cure, new therapeutic and prevention strategies are of crucial importance. In this scenario, cannabinoids are deeply investigated as promising neuroprotective compounds for AD. In this study, we evaluated the potential neuroprotective role of cannabinerol (CBNR) in an in vitro cellular model of AD via next-generation sequencing. We observed that CBNR pretreatment counteracts the Aß-induced loss of cell viability of differentiated SH-SY5Y cells. Moreover, a network-based transcriptomic analysis revealed that CBNR restores normal mitochondrial and endoplasmic reticulum functions in the AD model. Specifically, the most important genes regulated by CBNR are related mainly to oxidative phosphorylation (COX6B1, OXA1L, MT-CO2, MT-CO3), protein folding (HSPA5) and degradation (CUL3, FBXW7, UBE2D1), and glucose (G6PC3) and lipid (HSD17B7, ERG28, SCD) metabolism. Therefore, these results suggest that CBNR could be a new neuroprotective agent helpful in the prevention of AD dysfunctions.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Canabinoides , Retículo Endoplasmático , Mitocôndrias , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Canabinoides/farmacologia , Peptídeos beta-Amiloides/metabolismo , Chaperona BiP do Retículo Endoplasmático , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Sobrevivência Celular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Biológicos , Redes Reguladoras de Genes/efeitos dos fármacos
2.
Curr Microbiol ; 80(9): 303, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493762

RESUMO

Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are known to be responsible of various infections, including biofilm-associated diseases. The aim of this study was to analyze 19 strains of S. aureus from orthopedic sites in terms of phenotypic antimicrobial susceptibility against 13 selected antibiotics, slime/biofilm formation, molecular analysis of specific antibiotic resistance genes (mecA, cfr, rpoB), and biofilm-associated genes (icaADBC operon). Furthermore, the effect of phloretin on the production of biofilm was evaluated on 8 chosen isolates. The susceptibility test confirmed almost all strains were resistant to cefoxitin and oxacillin. Most strains possess the mecA, whereas none of the strains had the cfr gene. Four strains (1, 7, 10, and 24) presented single-nucleotide polymorphisms (SNPs) in rpoB, which confer rifampicin resistance. IcaD was detected in all tested strains, whereas icaR was only found in two strains (24 and 30). Phloretin had a dose-dependent effect on biofilm production. Specifically, 0.5 × MIC determined biofilm inhibition in 5 out of 8 strains (8, 24, 25, 27, 30), whereas an increase in biofilm production was detected with phloretin at the 0.125 × MIC across all tested strains. These data are useful to potentially develop novel compounds against antibiotic-resistant S. aureus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Floretina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Testes de Sensibilidade Microbiana
3.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175885

RESUMO

Endocan is a circulating proteoglycan secreted by several cell lines and identified as a potential biomarker of inflammation and angiogenesis. Endocan-increased expression has been found in a broad spectrum of human tumors, including lung cancer, and is associated with a poor prognosis. To elucidate the possible mechanism, this study aimed to investigate the role of endocan in non-small-cell lung carcinoma (NSCLC) using an in vitro model of cultured cells. Endocan expression was knocked down by using a specific small interfering RNA. The effects of endocan knockdown have been evaluated on VEGF-A, VEGFR-2, HIF-1α, the long non-coding RNAs H19 and HULC expression, and AKT and ERK 1/2 degree of activation. Cell migration and proliferation have been studied as well. VEGF-A, VEGFR-2, HIF-1α, and the long non-coding RNAs H19 and HULC expression were significantly affected by endocan knockdown. These effects correlated with a reduction of cell migration and proliferation and of AKT and ERK 1/2 activation. Our findings suggest that endocan promotes a more aggressive cancer cell phenotype in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral
4.
Biomolecules ; 13(5)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238720

RESUMO

Endocan is a small soluble proteoglycan (PG) known to be involved in inflammation and angiogenesis. Increased endocan expression was found in the synovia of arthritic patients and chondrocytes stimulated with IL-1ß. Considering these findings, we aimed to investigate the effects of endocan knockdown on the modulation of pro-angiogenic molecules expression in a model of IL-1ß-induced inflammation in human articular chondrocytes. Endocan, VEGF-A, MMP-9, MMP-13, and VEGFR-2 expression was measured in both normal and endocan knockdown chondrocytes stimulated with IL-1ß. VEGFR-2 and NF-kB activation were also measured. Results have shown that endocan, VEGF-A, VEGFR-2, MMP-9, and MMP-13 were significantly up-regulated during IL-1ß-induced inflammation; interestingly, the expression of such pro-angiogenic molecules and NF-kB activation were significantly reduced by endocan knockdown. These data support the hypothesis that endocan released by activated chondrocytes may be involved in the mechanisms that stimulate cell migration and invasion, as well as angiogenesis, in the pannus of arthritic joints.


Assuntos
NF-kappa B , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Condrócitos , Inflamação/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA