Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
2.
JAMIA Open ; 5(4): ooac097, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36448021

RESUMO

Objective: Hypertension has long been recognized as one of the most important predisposing factors for cardiovascular diseases and mortality. In recent years, machine learning methods have shown potential in diagnostic and predictive approaches in chronic diseases. Electronic health records (EHRs) have emerged as a reliable source of longitudinal data. The aim of this study is to predict the onset of hypertension using modern deep learning (DL) architectures, specifically long short-term memory (LSTM) networks, and longitudinal EHRs. Materials and Methods: We compare this approach to the best performing models reported from previous works, particularly XGboost, applied to aggregated features. Our work is based on data from 233 895 adult patients from a large health system in the United States. We divided our population into 2 distinct longitudinal datasets based on the diagnosis date. To ensure generalization to unseen data, we trained our models on the first dataset (dataset A "train and validation") using cross-validation, and then applied the models to a second dataset (dataset B "test") to assess their performance. We also experimented with 2 different time-windows before the onset of hypertension and evaluated the impact on model performance. Results: With the LSTM network, we were able to achieve an area under the receiver operating characteristic curve value of 0.98 in the "train and validation" dataset A and 0.94 in the "test" dataset B for a prediction time window of 1 year. Lipid disorders, type 2 diabetes, and renal disorders are found to be associated with incident hypertension. Conclusion: These findings show that DL models based on temporal EHR data can improve the identification of patients at high risk of hypertension and corresponding driving factors. In the long term, this work may support identifying individuals who are at high risk for developing hypertension and facilitate earlier intervention to prevent the future development of hypertension.

3.
Cardiovasc Digit Health J ; 3(5): 220-231, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36310683

RESUMO

Background: Electrocardiogram (ECG) deep learning (DL) has promise to improve the outcomes of patients with cardiovascular abnormalities. In ECG DL, researchers often use convolutional neural networks (CNNs) and traditionally use the full duration of raw ECG waveforms that create redundancies in feature learning and result in inaccurate predictions with large uncertainties. Objective: For enhancing these predictions, we introduced a sub-waveform representation that leverages the rhythmic pattern of ECG waveforms (data-centric approach) rather than changing the CNN architecture (model-centric approach). Results: We applied the proposed representation to a population with 92,446 patients to identify left ventricular dysfunction. We found that the sub-waveform representation increases the performance metrics compared to the full-waveform representation. We observed a 2% increase for area under the receiver operating characteristic curve and 10% increase for area under the precision-recall curve. We also carefully examined three reliability components of explainability, interpretability, and fairness. We provided an explanation for enhancements obtained by heartbeat alignment mechanism. By developing a new scoring system, we interpreted the clinical relevance of ECG features and showed that sub-waveform representation further pushes the scores towards clinical predictions. Finally, we showed that the new representation significantly reduces prediction uncertainties within subgroups that contributes to individual fairness. Conclusion: We expect that this added control over the granularity of ECG data will improve the DL modeling for new artificial intelligence technologies in the cardiovascular space.

4.
Patterns (N Y) ; 2(12): 100389, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723227

RESUMO

Deep learning (DL) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing DL models for the coronavirus disease 2019 (COVID-19) pandemic, where data are highly class imbalanced. Conventional approaches in DL use cross-entropy loss (CEL), which often suffers from poor margin classification. We show that contrastive loss (CL) improves the performance of CEL, especially in imbalanced electronic health records (EHR) data for COVID-19 analyses. We use a diverse EHR dataset to predict three outcomes: mortality, intubation, and intensive care unit (ICU) transfer in hospitalized COVID-19 patients over multiple time windows. To compare the performance of CEL and CL, models are tested on the full dataset and a restricted dataset. CL models consistently outperform CEL models, with differences ranging from 0.04 to 0.15 for area under the precision and recall curve (AUPRC) and 0.05 to 0.1 for area under the receiver-operating characteristic curve (AUROC).

5.
Patterns (N Y) ; 2(9): 100337, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34553174

RESUMO

Robust phenotyping of patients from electronic health records (EHRs) at scale is a challenge in clinical informatics. Here, we introduce Phe2vec, an automated framework for disease phenotyping from EHRs based on unsupervised learning and assess its effectiveness against standard rule-based algorithms from Phenotype KnowledgeBase (PheKB). Phe2vec is based on pre-computing embeddings of medical concepts and patients' clinical history. Disease phenotypes are then derived from a seed concept and its neighbors in the embedding space. Patients are linked to a disease if their embedded representation is close to the disease phenotype. Comparing Phe2vec and PheKB cohorts head-to-head using chart review, Phe2vec performed on par or better in nine out of ten diseases. Differently from other approaches, it can scale to any condition and was validated against widely adopted expert-based standards. Phe2vec aims to optimize clinical informatics research by augmenting current frameworks to characterize patients by condition and derive reliable disease cohorts.

6.
IEEE Trans Big Data ; 7(1): 38-44, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33768136

RESUMO

Traditional Machine Learning (ML) models have had limited success in predicting Coronoavirus-19 (COVID-19) outcomes using Electronic Health Record (EHR) data partially due to not effectively capturing the inter-connectivity patterns between various data modalities. In this work, we propose a novel framework that utilizes relational learning based on a heterogeneous graph model (HGM) for predicting mortality at different time windows in COVID-19 patients within the intensive care unit (ICU). We utilize the EHRs of one of the largest and most diverse patient populations across five hospitals in major health system in New York City. In our model, we use an LSTM for processing time varying patient data and apply our proposed relational learning strategy in the final output layer along with other static features. Here, we replace the traditional softmax layer with a Skip-Gram relational learning strategy to compare the similarity between a patient and outcome embedding representation. We demonstrate that the construction of a HGM can robustly learn the patterns classifying patient representations of outcomes through leveraging patterns within the embeddings of similar patients. Our experimental results show that our relational learning-based HGM model achieves higher area under the receiver operating characteristic curve (auROC) than both comparator models in all prediction time windows, with dramatic improvements to recall.

7.
Europace ; 23(8): 1179-1191, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-33564873

RESUMO

In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement.


Assuntos
Cardiologia , Aprendizado Profundo , Inteligência Artificial , Eletrocardiografia , Humanos , Aprendizado de Máquina
8.
J Med Internet Res ; 23(2): e26107, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33529156

RESUMO

BACKGROUND: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. OBJECTIVE: We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. METHODS: Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. RESULTS: Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01). CONCLUSIONS: Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/fisiopatologia , Frequência Cardíaca/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , COVID-19/virologia , Ritmo Circadiano/fisiologia , Feminino , Pessoal de Saúde , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
9.
JMIR Med Inform ; 9(1): e24207, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33400679

RESUMO

BACKGROUND: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. OBJECTIVE: We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. METHODS: Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. RESULTS: The LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals. CONCLUSIONS: The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.

10.
ArXiv ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33442560

RESUMO

Machine Learning (ML) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing ML models for the coronavirus-disease 2019 (COVID-19) pandemic where data is highly imbalanced, particularly within electronic health records (EHR) research. Conventional approaches in ML use cross-entropy loss (CEL) that often suffers from poor margin classification. For the first time, we show that contrastive loss (CL) improves the performance of CEL especially for imbalanced EHR data and the related COVID-19 analyses. This study has been approved by the Institutional Review Board at the Icahn School of Medicine at Mount Sinai. We use EHR data from five hospitals within the Mount Sinai Health System (MSHS) to predict mortality, intubation, and intensive care unit (ICU) transfer in hospitalized COVID-19 patients over 24 and 48 hour time windows. We train two sequential architectures (RNN and RETAIN) using two loss functions (CEL and CL). Models are tested on full sample data set which contain all available data and restricted data set to emulate higher class imbalance.CL models consistently outperform CEL models with the restricted data set on these tasks with differences ranging from 0.04 to 0.15 for AUPRC and 0.05 to 0.1 for AUROC. For the restricted sample, only the CL model maintains proper clustering and is able to identify important features, such as pulse oximetry. CL outperforms CEL in instances of severe class imbalance, on three EHR outcomes with respect to three performance metrics: predictive power, clustering, and feature importance. We believe that the developed CL framework can be expanded and used for EHR ML work in general.

11.
J Am Soc Nephrol ; 32(1): 151-160, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883700

RESUMO

BACKGROUND: Early reports indicate that AKI is common among patients with coronavirus disease 2019 (COVID-19) and associated with worse outcomes. However, AKI among hospitalized patients with COVID-19 in the United States is not well described. METHODS: This retrospective, observational study involved a review of data from electronic health records of patients aged ≥18 years with laboratory-confirmed COVID-19 admitted to the Mount Sinai Health System from February 27 to May 30, 2020. We describe the frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aORs) with mortality. RESULTS: Of 3993 hospitalized patients with COVID-19, AKI occurred in 1835 (46%) patients; 347 (19%) of the patients with AKI required dialysis. The proportions with stages 1, 2, or 3 AKI were 39%, 19%, and 42%, respectively. A total of 976 (24%) patients were admitted to intensive care, and 745 (76%) experienced AKI. Of the 435 patients with AKI and urine studies, 84% had proteinuria, 81% had hematuria, and 60% had leukocyturia. Independent predictors of severe AKI were CKD, men, and higher serum potassium at admission. In-hospital mortality was 50% among patients with AKI versus 8% among those without AKI (aOR, 9.2; 95% confidence interval, 7.5 to 11.3). Of survivors with AKI who were discharged, 35% had not recovered to baseline kidney function by the time of discharge. An additional 28 of 77 (36%) patients who had not recovered kidney function at discharge did so on posthospital follow-up. CONCLUSIONS: AKI is common among patients hospitalized with COVID-19 and is associated with high mortality. Of all patients with AKI, only 30% survived with recovery of kidney function by the time of discharge.


Assuntos
Injúria Renal Aguda/etiologia , COVID-19/complicações , SARS-CoV-2 , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/terapia , Injúria Renal Aguda/urina , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , Feminino , Hematúria/etiologia , Mortalidade Hospitalar , Hospitais Privados/estatística & dados numéricos , Hospitais Urbanos/estatística & dados numéricos , Humanos , Incidência , Pacientes Internados , Leucócitos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Proteinúria/etiologia , Diálise Renal , Estudos Retrospectivos , Resultado do Tratamento , Urina/citologia
12.
BMJ Open ; 10(11): e040736, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247020

RESUMO

OBJECTIVE: The COVID-19 pandemic is a global public health crisis, with over 33 million cases and 999 000 deaths worldwide. Data are needed regarding the clinical course of hospitalised patients, particularly in the USA. We aimed to compare clinical characteristic of patients with COVID-19 who had in-hospital mortality with those who were discharged alive. DESIGN: Demographic, clinical and outcomes data for patients admitted to five Mount Sinai Health System hospitals with confirmed COVID-19 between 27 February and 2 April 2020 were identified through institutional electronic health records. We performed a retrospective comparative analysis of patients who had in-hospital mortality or were discharged alive. SETTING: All patients were admitted to the Mount Sinai Health System, a large quaternary care urban hospital system. PARTICIPANTS: Participants over the age of 18 years were included. PRIMARY OUTCOMES: We investigated in-hospital mortality during the study period. RESULTS: A total of 2199 patients with COVID-19 were hospitalised during the study period. As of 2 April, 1121 (51%) patients remained hospitalised, and 1078 (49%) completed their hospital course. Of the latter, the overall mortality was 29%, and 36% required intensive care. The median age was 65 years overall and 75 years in those who died. Pre-existing conditions were present in 65% of those who died and 46% of those discharged. In those who died, the admission median lymphocyte percentage was 11.7%, D-dimer was 2.4 µg/mL, C reactive protein was 162 mg/L and procalcitonin was 0.44 ng/mL. In those discharged, the admission median lymphocyte percentage was 16.6%, D-dimer was 0.93 µg/mL, C reactive protein was 79 mg/L and procalcitonin was 0.09 ng/mL. CONCLUSIONS: In our cohort of hospitalised patients, requirement of intensive care and mortality were high. Patients who died typically had more pre-existing conditions and greater perturbations in inflammatory markers as compared with those who were discharged.


Assuntos
COVID-19/sangue , Cuidados Críticos , Mortalidade Hospitalar , Hospitalização , Pandemias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/metabolismo , COVID-19/epidemiologia , COVID-19/mortalidade , Comorbidade , Cuidados Críticos/estatística & dados numéricos , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Hospitais , Humanos , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Pró-Calcitonina/sangue , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Adulto Jovem
13.
J Med Internet Res ; 22(11): e24018, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027032

RESUMO

BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. OBJECTIVE: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. METHODS: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19-positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. RESULTS: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. CONCLUSIONS: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes.


Assuntos
Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/mortalidade , Aprendizado de Máquina/normas , Pneumonia Viral/diagnóstico , Pneumonia Viral/mortalidade , Injúria Renal Aguda/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Estudos de Coortes , Registros Eletrônicos de Saúde , Feminino , Mortalidade Hospitalar , Hospitalização/estatística & dados numéricos , Hospitais , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Pandemias , Prognóstico , Curva ROC , Medição de Risco/métodos , Medição de Risco/normas , SARS-CoV-2 , Adulto Jovem
14.
medRxiv ; 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817979

RESUMO

Machine learning (ML) models require large datasets which may be siloed across different healthcare institutions. Using federated learning, a ML technique that avoids locally aggregating raw clinical data across multiple institutions, we predict mortality within seven days in hospitalized COVID-19 patients. Patient data was collected from Electronic Health Records (EHRs) from five hospitals within the Mount Sinai Health System (MSHS). Logistic Regression with L1 regularization (LASSO) and Multilayer Perceptron (MLP) models were trained using local data at each site, a pooled model with combined data from all five sites, and a federated model that only shared parameters with a central aggregator. Both the federated LASSO and federated MLP models performed better than their local model counterparts at four hospitals. The federated MLP model also outperformed the federated LASSO model at all hospitals. Federated learning shows promise in COVID-19 EHR data to develop robust predictive models without compromising patient privacy.

15.
NPJ Digit Med ; 3: 96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32699826

RESUMO

Deriving disease subtypes from electronic health records (EHRs) can guide next-generation personalized medicine. However, challenges in summarizing and representing patient data prevent widespread practice of scalable EHR-based stratification analysis. Here we present an unsupervised framework based on deep learning to process heterogeneous EHRs and derive patient representations that can efficiently and effectively enable patient stratification at scale. We considered EHRs of 1,608,741 patients from a diverse hospital cohort comprising a total of 57,464 clinical concepts. We introduce a representation learning model based on word embeddings, convolutional neural networks, and autoencoders (i.e., ConvAE) to transform patient trajectories into low-dimensional latent vectors. We evaluated these representations as broadly enabling patient stratification by applying hierarchical clustering to different multi-disease and disease-specific patient cohorts. ConvAE significantly outperformed several baselines in a clustering task to identify patients with different complex conditions, with 2.61 entropy and 0.31 purity average scores. When applied to stratify patients within a certain condition, ConvAE led to various clinically relevant subtypes for different disorders, including type 2 diabetes, Parkinson's disease, and Alzheimer's disease, largely related to comorbidities, disease progression, and symptom severity. With these results, we demonstrate that ConvAE can generate patient representations that lead to clinically meaningful insights. This scalable framework can help better understand varying etiologies in heterogeneous sub-populations and unlock patterns for EHR-based research in the realm of personalized medicine.

16.
medRxiv ; 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511564

RESUMO

IMPORTANCE: Preliminary reports indicate that acute kidney injury (AKI) is common in coronavirus disease (COVID)-19 patients and is associated with worse outcomes. AKI in hospitalized COVID-19 patients in the United States is not well-described. OBJECTIVE: To provide information about frequency, outcomes and recovery associated with AKI and dialysis in hospitalized COVID-19 patients. DESIGN: Observational, retrospective study. SETTING: Admitted to hospital between February 27 and April 15, 2020. PARTICIPANTS: Patients aged ≥18 years with laboratory confirmed COVID-19 Exposures: AKI (peak serum creatinine increase of 0.3 mg/dL or 50% above baseline). Main Outcomes and Measures: Frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aOR) with mortality. We also trained and tested a machine learning model for predicting dialysis requirement with independent validation. RESULTS: A total of 3,235 hospitalized patients were diagnosed with COVID-19. AKI occurred in 1406 (46%) patients overall and 280 (20%) with AKI required renal replacement therapy. The incidence of AKI (admission plus new cases) in patients admitted to the intensive care unit was 68% (553 of 815). In the entire cohort, the proportion with stages 1, 2, and 3 AKI were 35%, 20%, 45%, respectively. In those needing intensive care, the respective proportions were 20%, 17%, 63%, and 34% received acute renal replacement therapy. Independent predictors of severe AKI were chronic kidney disease, systolic blood pressure, and potassium at baseline. In-hospital mortality in patients with AKI was 41% overall and 52% in intensive care. The aOR for mortality associated with AKI was 9.6 (95% CI 7.4-12.3) overall and 20.9 (95% CI 11.7-37.3) in patients receiving intensive care. 56% of patients with AKI who were discharged alive recovered kidney function back to baseline. The area under the curve (AUC) for the machine learned predictive model using baseline features for dialysis requirement was 0.79 in a validation test. CONCLUSIONS AND RELEVANCE: AKI is common in patients hospitalized with COVID-19, associated with worse mortality, and the majority of patients that survive do not recover kidney function. A machine-learned model using admission features had good performance for dialysis prediction and could be used for resource allocation.

17.
medRxiv ; 2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32511655

RESUMO

BACKGROUND: The coronavirus 2019 (Covid-19) pandemic is a global public health crisis, with over 1.6 million cases and 95,000 deaths worldwide. Data are needed regarding the clinical course of hospitalized patients, particularly in the United States. METHODS: Demographic, clinical, and outcomes data for patients admitted to five Mount Sinai Health System hospitals with confirmed Covid-19 between February 27 and April 2, 2020 were identified through institutional electronic health records. We conducted a descriptive study of patients who had in-hospital mortality or were discharged alive. RESULTS: A total of 2,199 patients with Covid-19 were hospitalized during the study period. As of April 2 nd , 1,121 (51%) patients remained hospitalized, and 1,078 (49%) completed their hospital course. Of the latter, the overall mortality was 29%, and 36% required intensive care. The median age was 65 years overall and 75 years in those who died. Pre-existing conditions were present in 65% of those who died and 46% of those discharged. In those who died, the admission median lymphocyte percentage was 11.7%, D-dimer was 2.4 ug/ml, C-reactive protein was 162 mg/L, and procalcitonin was 0.44 ng/mL. In those discharged, the admission median lymphocyte percentage was 16.6%, D-dimer was 0.93 ug/ml, C-reactive protein was 79 mg/L, and procalcitonin was 0.09 ng/mL. CONCLUSIONS: This is the largest and most diverse case series of hospitalized patients with Covid-19 in the United States to date. Requirement of intensive care and mortality were high. Patients who died typically had pre-existing conditions and severe perturbations in inflammatory markers.

18.
Clin Infect Dis ; 71(11): 2933-2938, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32594164

RESUMO

BACKGROUND: There are limited data regarding the clinical impact of coronavirus disease 2019 (COVID-19) on people living with human immunodeficiency virus (PLWH). In this study, we compared outcomes for PLWH with COVID-19 to a matched comparison group. METHODS: We identified 88 PLWH hospitalized with laboratory-confirmed COVID-19 in our hospital system in New York City between 12 March and 23 April 2020. We collected data on baseline clinical characteristics, laboratory values, HIV status, treatment, and outcomes from this group and matched comparators (1 PLWH to up to 5 patients by age, sex, race/ethnicity, and calendar week of infection). We compared clinical characteristics and outcomes (death, mechanical ventilation, hospital discharge) for these groups, as well as cumulative incidence of death by HIV status. RESULTS: Patients did not differ significantly by HIV status by age, sex, or race/ethnicity due to the matching algorithm. PLWH hospitalized with COVID-19 had high proportions of HIV virologic control on antiretroviral therapy. PLWH had greater proportions of smoking (P < .001) and comorbid illness than uninfected comparators. There was no difference in COVID-19 severity on admission by HIV status (P = .15). Poor outcomes for hospitalized PLWH were frequent but similar to proportions in comparators; 18% required mechanical ventilation and 21% died during follow-up (compared with 23% and 20%, respectively). There was similar cumulative incidence of death over time by HIV status (P = .94). CONCLUSIONS: We found no differences in adverse outcomes associated with HIV infection for hospitalized COVID-19 patients compared with a demographically similar patient group.


Assuntos
COVID-19 , Coronavirus , Infecções por HIV , COVID-19/mortalidade , COVID-19/terapia , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Humanos , Cidade de Nova Iorque/epidemiologia , Alta do Paciente , Respiração Artificial , SARS-CoV-2 , Resultado do Tratamento
19.
J Cardiovasc Pharmacol Ther ; 25(5): 379-390, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32495652

RESUMO

Despite substantial advances in the study, treatment, and prevention of cardiovascular disease, numerous challenges relating to optimally screening, diagnosing, and managing patients remain. Simultaneous improvements in computing power, data storage, and data analytics have led to the development of new techniques to address these challenges. One powerful tool to this end is machine learning (ML), which aims to algorithmically identify and represent structure within data. Machine learning's ability to efficiently analyze large and highly complex data sets make it a desirable investigative approach in modern biomedical research. Despite this potential and enormous public and private sector investment, few prospective studies have demonstrated improved clinical outcomes from this technology. This is particularly true in cardiology, despite its emphasis on objective, data-driven results. This threatens to stifle ML's growth and use in mainstream medicine. We outline the current state of ML in cardiology and outline methods through which impactful and sustainable ML research can occur. Following these steps can ensure ML reaches its potential as a transformative technology in medicine.


Assuntos
Cardiologia/tendências , Mineração de Dados/tendências , Aprendizado de Máquina/tendências , Aprendizado Profundo/tendências , Diagnóstico por Computador/tendências , Difusão de Inovações , Previsões , Humanos , Terapia Assistida por Computador/tendências
20.
JMIR Med Inform ; 8(2): e16878, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32130159

RESUMO

BACKGROUND: Acute and chronic low back pain (LBP) are different conditions with different treatments. However, they are coded in electronic health records with the same International Classification of Diseases, 10th revision (ICD-10) code (M54.5) and can be differentiated only by retrospective chart reviews. This prevents an efficient definition of data-driven guidelines for billing and therapy recommendations, such as return-to-work options. OBJECTIVE: The objective of this study was to evaluate the feasibility of automatically distinguishing acute LBP episodes by analyzing free-text clinical notes. METHODS: We used a dataset of 17,409 clinical notes from different primary care practices; of these, 891 documents were manually annotated as acute LBP and 2973 were generally associated with LBP via the recorded ICD-10 code. We compared different supervised and unsupervised strategies for automated identification: keyword search, topic modeling, logistic regression with bag of n-grams and manual features, and deep learning (a convolutional neural network-based architecture [ConvNet]). We trained the supervised models using either manual annotations or ICD-10 codes as positive labels. RESULTS: ConvNet trained using manual annotations obtained the best results with an area under the receiver operating characteristic curve of 0.98 and an F score of 0.70. ConvNet's results were also robust to reduction of the number of manually annotated documents. In the absence of manual annotations, topic models performed better than methods trained using ICD-10 codes, which were unsatisfactory for identifying LBP acuity. CONCLUSIONS: This study uses clinical notes to delineate a potential path toward systematic learning of therapeutic strategies, billing guidelines, and management options for acute LBP at the point of care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA