Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
N Engl J Med ; 389(16): 1477-1487, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37634149

RESUMO

BACKGROUND: Imaging-guided percutaneous coronary intervention (PCI) is associated with better clinical outcomes than angiography-guided PCI. Whether routine optical coherence tomography (OCT) guidance in PCI of lesions involving coronary-artery branch points (bifurcations) improves clinical outcomes as compared with angiographic guidance is uncertain. METHODS: We conducted a multicenter, randomized, open-label trial at 38 centers in Europe. Patients with a clinical indication for PCI and a complex bifurcation lesion identified by means of coronary angiography were randomly assigned in a 1:1 ratio to OCT-guided PCI or angiography-guided PCI. The primary end point was a composite of major adverse cardiac events (MACE), defined as death from a cardiac cause, target-lesion myocardial infarction, or ischemia-driven target-lesion revascularization at a median follow-up of 2 years. RESULTS: We assigned 1201 patients to OCT-guided PCI (600 patients) or angiography-guided PCI (601 patients). A total of 111 patients (18.5%) in the OCT-guided PCI group and 116 (19.3%) in the angiography-guided PCI group had a bifurcation lesion involving the left main coronary artery. At 2 years, a primary end-point event had occurred in 59 patients (10.1%) in the OCT-guided PCI group and in 83 patients (14.1%) in the angiography-guided PCI group (hazard ratio, 0.70; 95% confidence interval, 0.50 to 0.98; P = 0.035). Procedure-related complications occurred in 41 patients (6.8%) in the OCT-guided PCI group and 34 patients (5.7%) in the angiography-guided PCI group. CONCLUSIONS: Among patients with complex coronary-artery bifurcation lesions, OCT-guided PCI was associated with a lower incidence of MACE at 2 years than angiography-guided PCI. (Funded by Abbott Vascular and others; OCTOBER ClinicalTrials.gov number, NCT03171311.).


Assuntos
Angiografia Coronária , Doença da Artéria Coronariana , Intervenção Coronária Percutânea , Tomografia de Coerência Óptica , Humanos , Angiografia Coronária/efeitos adversos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Tomografia de Coerência Óptica/efeitos adversos , Tomografia de Coerência Óptica/métodos , Resultado do Tratamento , Europa (Continente)
3.
Benef Microbes ; 9(1): 87-100, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29022382

RESUMO

Beneficial bacteria represent potential sources of therapy, particularly in the battle against antibiotic-resistant pathogens. The Gram-negative bacillus Klebsiella pneumoniae is not only a paradigm of multi-resistant opportunistic pathogen, but it is also able to colonise the human intestine and displays a high capacity to form biofilm. In this study, the anti-biofilm activity of 140 neutralised Lactobacillus supernatants was assessed against K. pneumoniae. Among the 13 strains whose supernatant significantly impaired biofilm formation, Lactobacillus plantarum CIRM653 was selected because it was also able to impair K. pneumoniae preformed biofilm, independently of a bactericidal effect. Mixed K. pneumoniae/L. plantarum CIRM653 biofilms had reduced tridimensional structures associated with a significant decrease in K. pneumoniae biomass. Further investigation showed that L. plantarum CIRM653 supernatant induced transcriptional modifications of K. pneumoniae biofilm-related genes, including down-regulation of the quorum sensing-related lsr operons and over-expression of type 3 pili structure genes. Increased production of type 3 pili was validated by Western-blot, hemagglutination and adhesion assays. L. plantarum CIRM653 activity against K. pneumoniae was also assessed in a murine intestinal colonisation model: a constant faecal pathogen burden was observed, as against a gradual decrease in the control group. These results reveal that an in vitro a priori attracting anti-biofilm activity of Lactobacillus might be counterbalanced by an in vivo behaviour in a complex microbiota environment with potential deleterious dispersal of highly adherent K. pneumoniae cells, raising the question of the accuracy of in vitro assays in screening of beneficial microbes.


Assuntos
Antibiose , Biofilmes/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Lactobacillus plantarum/fisiologia , Animais , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Técnicas de Cocultura , Fímbrias Bacterianas/genética , Klebsiella pneumoniae/genética , Lactobacillus/classificação , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/fisiologia , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo , Camundongos , Percepção de Quorum/genética , Transcrição Gênica
4.
Sci Rep ; 6: 19399, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26775847

RESUMO

Visceral pain and intestinal dysbiosis are associated with Irritable Bowel Syndrome (IBS), a common functional gastrointestinal disorder without available efficient therapies. In this study, a decrease of Faecalibacterium prausnitzii presence has been observed in an IBS-like rodent model induced by a neonatal maternal separation (NMS) stress. Moreover, it was investigated whether F. prausnitzii may have an impact on colonic sensitivity. The A2-165 reference strain, but not its supernatant, significantly decreased colonic hypersensitivity induced by either NMS in mice or partial restraint stress in rats. This effect was associated with a reinforcement of intestinal epithelial barrier. Thus, F. prausnitzii exhibits anti-nociceptive properties, indicating its potential to treat abdominal pain in IBS patients.


Assuntos
Faecalibacterium prausnitzii/fisiologia , Mucosa Intestinal , Síndrome do Intestino Irritável/etiologia , Animais , Colo/imunologia , Colo/metabolismo , Colo/microbiologia , Modelos Animais de Doenças , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/microbiologia , Masculino , Privação Materna , Camundongos , Permeabilidade , Estresse Fisiológico
5.
Gut ; 65(3): 415-425, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26045134

RESUMO

BACKGROUND: Crohn's disease (CD)-associated dysbiosis is characterised by a loss of Faecalibacterium prausnitzii, whose culture supernatant exerts an anti-inflammatory effect both in vitro and in vivo. However, the chemical nature of the anti-inflammatory compounds has not yet been determined. METHODS: Peptidomic analysis using mass spectrometry was applied to F. prausnitzii supernatant. Anti-inflammatory effects of identified peptides were tested in vitro directly on intestinal epithelial cell lines and on cell lines transfected with a plasmid construction coding for the candidate protein encompassing these peptides. In vivo, the cDNA of the candidate protein was delivered to the gut by recombinant lactic acid bacteria to prevent dinitrobenzene sulfonic acid (DNBS)-colitis in mice. RESULTS: The seven peptides, identified in the F. prausnitzii culture supernatants, derived from a single microbial anti-inflammatory molecule (MAM), a protein of 15 kDa, and comprising 53% of non-polar residues. This last feature prevented the direct characterisation of the putative anti-inflammatory activity of MAM-derived peptides. Transfection of MAM cDNA in epithelial cells led to a significant decrease in the activation of the nuclear factor (NF)-κB pathway with a dose-dependent effect. Finally, the use of a food-grade bacterium, Lactococcus lactis, delivering a plasmid encoding MAM was able to alleviate DNBS-induced colitis in mice. CONCLUSIONS: A 15 kDa protein with anti-inflammatory properties is produced by F. prausnitzii, a commensal bacterium involved in CD pathogenesis. This protein is able to inhibit the NF-κB pathway in intestinal epithelial cells and to prevent colitis in an animal model.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridiales/metabolismo , Doença de Crohn/microbiologia , Disbiose/microbiologia , Mucosa Intestinal/microbiologia , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/uso terapêutico , Biomarcadores/metabolismo , Linhagem Celular , Colite/induzido quimicamente , Colite/metabolismo , Colite/prevenção & controle , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Disbiose/metabolismo , Disbiose/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , NF-kappa B/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Gut Microbes ; 6(1): 1-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25517879

RESUMO

Impaired gut barrier function has been reported in a wide range of diseases and syndromes and in some functional gastrointestinal disorders. In addition, there is increasing evidence that suggests the gut microbiota tightly regulates gut barrier function and recent studies demonstrate that probiotic bacteria can enhance barrier integrity. Here, we aimed to investigate the effects of Lactobacillus rhamnosus CNCM I-3690 on intestinal barrier function. In vitro results using a Caco-2 monolayer cells stimulated with TNF-α confirmed the anti-inflammatory nature of the strain CNCM I-3690 and pointed out a putative role for the protection of the epithelial function. Next, we tested the protective effects of L. rhamnosus CNCM I-3690 in a mouse model of increased colonic permeability. Most importantly, we compared its performance to that of the well-known beneficial human commensal bacterium Faecalibacterium prauznitzii A2-165. Increased colonic permeability was normalized by both strains to a similar degree. Modulation of apical tight junction proteins expression was then analyzed to decipher the mechanism underlying this effect. We showed that CNCM I-3690 partially restored the function of the intestinal barrier and increased the levels of tight junction proteins Occludin and E-cadherin. The results indicate L. rhamnosus CNCM I-3690 is as effective as the commensal anti-inflammatory bacterium F. prausnitzii to treat functional barrier abnormalities.


Assuntos
Anti-Inflamatórios/administração & dosagem , Clostridium/fisiologia , Mucosa Intestinal/fisiologia , Lacticaseibacillus rhamnosus/fisiologia , Permeabilidade/efeitos dos fármacos , Probióticos/administração & dosagem , Experimentação Animal , Animais , Células CACO-2 , Clostridium/crescimento & desenvolvimento , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Humanos , Mucosa Intestinal/efeitos dos fármacos , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Proteínas de Junções Íntimas/biossíntese , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
7.
Benef Microbes ; 5(3): 219-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24583612

RESUMO

The human gut houses one of the most complex and abundant ecosystems composed of up to 1013-1014 microorganisms. Although the anthropocentric concept of life has concealed the function of microorganisms inside us, the important role of gut bacterial community in human health is well recognised today. Moreover, different microorganims, which are commonly present in a large diversity of food products, transit through our gut every day adding in some cases a beneficial effect to our health (probiotics). This crosstalk is concentrated mainly in the intestinal epithelium, where microbes provide the host with essential nutrients and modulation of the immune system. Furthermore, microorganisms also display antimicrobial activities maintaining a gut ecosystem stable. This review summarises some of the recent findings on the interaction of both commensal and probiotic bacteria with each other and with the host. The aim is to highlight the cooperative status found in healthy individuals as well as the importance of this crosstalk in the maintenance of human homeostasis.


Assuntos
Mucosa Intestinal/microbiologia , Microbiota/imunologia , Simbiose , Peptídeos Catiônicos Antimicrobianos/biossíntese , Butiratos/metabolismo , Ecossistema , Alimentos , Humanos , Imunomodulação , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Fenômenos Fisiológicos da Nutrição , Probióticos
8.
Curr Opin Microbiol ; 16(3): 255-61, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23831042

RESUMO

Faecalibacterium prausnitzii is the most abundant bacterium in the human intestinal microbiota of healthy adults, representing more than 5% of the total bacterial population. Over the past five years, an increasing number of studies have clearly described the importance of this highly metabolically active commensal bacterium as a component of the healthy human microbiota. Changes in the abundance of F. prausnitzii have been linked to dysbiosis in several human disorders. Administration of F. prausnitzii strain A2-165 and its culture supernatant have been shown to protect against 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in mice. Here, we discuss the role of F. prausnitzii in balancing immunity in the intestine and the mechanisms involved.


Assuntos
Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas/fisiologia , Simbiose , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA