Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbes Infect ; 26(3): 105286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160785

RESUMO

Lacticaseibacillus rhamnosus Lcr35 is a well-known bacterial strain whose efficiency in preventing recurrent vulvovaginal candidiasis has been largely demonstrated in clinical trials. The presence of sodium thiosulfate (STS) has been shown to enhance its ability to inhibit the growth of Candida albicans strains. In this study, we confirmed that Lcr35 has a fungicidal effect not only on the planktonic form of C. albicans but also on other life forms such as hypha and biofilm. Transcriptomic analysis showed that the presence of C. albicans induced a metabolic adaptation of Lcr35 potentially associated with a competitive advantage over yeast cells. However, STS alone had no impact on the global gene expression of Lcr35, which is not in favor of the involvement of an enzymatic transformation of STS. Comparative HPLC and gas chromatography-mass spectrometry analysis of the organic phase from cell-free supernatant (CFS) fractions obtained from Lcr35 cultures performed in the presence and absence of STS identified elemental sulfur (S0) in the samples initially containing STS. In addition, the anti-Candida activity of CFS from STS-containing cultures was shown to be pH-dependent and occurred at acidic pH lower than 5. We next investigated the antifungal activity of lactic acid and acetic acid, the two main organic acids produced by lactobacilli. The two molecules affected the viability of C. albicans but only at pH 3.5 and in a dose-dependent manner, an antifungal effect that was enhanced in samples containing STS in which the thiosulfate was decomposed into S0. In conclusion, the use of STS as an excipient in the manufacturing process of Lcr35 exerted a dual action since the production of organic acids by Lcr35 facilitates the decomposition of thiosulfate into S0, thereby enhancing the bacteria's own anti-fungal effect.


Assuntos
Lacticaseibacillus rhamnosus , Tiossulfatos , Antifúngicos/farmacologia , Candida albicans , Ácido Acético/farmacologia , Biofilmes
2.
Sci Rep ; 12(1): 16968, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216848

RESUMO

Type VI secretion systems (T6SS), recently described in hypervirulent K. pneumoniae (hvKp) strains, are involved in bacterial warfare but their role in classical clinical strains (cKp) has been little investigated. In silico analysis indicated the presence of T6SS clusters (from zero to four), irrespective of the strains origin or virulence, with a high prevalence in the K. pneumoniae species (98%). In the strain CH1157, two T6SS-apparented pathogenicity islands were detected, T6SS-1 and -2, harboring a phospholipase-encoding gene (tle1) and a potential new effector-encoding gene named tke (Type VI Klebsiella effector). Tle1 expression in Escherichia coli periplasm affected cell membrane permeability. T6SS-1 isogenic mutants colonized the highest gastrointestinal tract of mice less efficiently than their parental strain, at long term. Comparative analysis of faecal 16S sequences indicated that T6SS-1 impaired the microbiota richness and its resilience capacity. Oscillospiraceae family members could be specific competitors for the long-term gut establishment of K. pneumoniae.


Assuntos
Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VII , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Trato Gastrointestinal/metabolismo , Klebsiella pneumoniae , Camundongos , Fosfolipases/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VII/metabolismo
3.
Infect Immun ; 90(9): e0030922, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36000874

RESUMO

Dysbiosis of the vaginal microbiome as a result of overgrowth of anaerobic bacteria, such as Gardnerella vaginalis, and low levels of "healthy" lactobacilli leads to bacterial vaginosis (BV), usually associated with a low-grade inflammatory process. Despite appropriate antibiotic treatment, G. vaginalis-associated BV is characterized by significant recurrence. The use of probiotics could be an interesting alternative therapy due to their ability to rebalance vaginal microbiota. In this study, we investigated the effects of a well-characterized probiotic strain, Lacticaseibacillus rhamnosus Lcr35, on epithelial vaginal and dendritic cell (DC) immune responses after G. vaginalis infection. In an in vitro coculture model with human monocyte-derived dendritic cells and a vaginal epithelial cell (VEC) monolayer, the Lcr35 strain induced DC activation, as evidenced by the induction of maturation and synthesis of interleukin-8 (IL-8) and CCL-20 chemokines upon apical challenge of the VECs by G. vaginalis. Analysis of the vaginal epithelial response showed that the presence of Lcr35 significantly increased the production of the proinflammatory cytokines IL-8 and IL-1ß and human ß-defensin 2 (HBD-2), whereas the concentration of secretory leukocyte protease inhibitor (SLPI) was decreased in G. vaginalis-infected vaginal epithelial cells. Treatment with recombinant SLPI was associated with upregulation of Lcr35-stimulated IL-8 and HBD-2 production. These results suggest that inhibition of SLPI by Lcr35 in vaginal epithelial cells contributes to the host defense response against G. vaginalis infection.


Assuntos
Lacticaseibacillus rhamnosus , Vaginose Bacteriana , beta-Defensinas , Antibacterianos , Quimiocinas , Citocinas , Feminino , Gardnerella vaginalis , Humanos , Interleucina-8 , Inibidor Secretado de Peptidases Leucocitárias , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
4.
Microorganisms ; 9(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204632

RESUMO

Klebsiella pneumoniae is a Gram-negative pathogen responsible for community-acquired and nosocomial infections. The strains of this species belong to the opportunistic group, which is comprised of the multidrug-resistant strains, or the hypervirulent group, depending on their accessory genome, which determines bacterial pathogenicity and the host immune response. The aim of this survey is to present an overview of the murine models mimicking K. pneumoniae infectious processes (i.e., gastrointestinal colonization, urinary, pulmonary, and systemic infections), and the bacterial functions deployed to colonize and disseminate into the host. These in vivo approaches are pivotal to develop new therapeutics to limit K. pneumoniae infections via a modulation of the immune responses and/or microbiota.

5.
Sci Rep ; 10(1): 17074, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051479

RESUMO

GYNOPHILUS (Lcr REGENERANS) is a live biotherapeutic product (LBP) aimed at restoring the vaginal microbiome and contains the live biotherapeutic microorganism Lactobacillus rhamnosus Lcr35. In this study, the LBP formulation and manufacturing process significantly enhanced the anti-Candida activity of L. rhamnosus Lcr35, with a complete loss of viability of the yeast after 48 h of coincubation. Sodium thiosulfate (STS), one excipient of the product, was used as a potentiator of the anti-Candida spp. activity of Lactobacilli. This contact-independent phenomenon induced fungal cell disturbances, as observed by electron microscopy observations. Nonverbal sensory experiments showed clear odor dissimilarities between cocultures of L. rhamnosus Lcr35 and C. albicans in the presence and absence of STS, suggesting an impact of odor-active metabolites. A volatolomic approach allowed the identification of six odor-active compounds, including one sulfur compound that was identified as S-methyl thioacetate (MTA). MTA was associated with the antifungal effect of Lcr35, and its functional link was established in vitro. We show for the first time that the LBP GYNOPHILUS, which is a highly active product in the reduction of vulvovaginal candidiasis, requires the presence of a sulfur compound to fully achieve its antifungal effect.


Assuntos
Antifúngicos/administração & dosagem , Candidíase Vulvovaginal/microbiologia , Candidíase Vulvovaginal/terapia , Lacticaseibacillus rhamnosus/fisiologia , Probióticos/administração & dosagem , Compostos de Enxofre/administração & dosagem , Acetatos/administração & dosagem , Candida albicans/patogenicidade , Candida albicans/fisiologia , Candida albicans/ultraestrutura , Técnicas de Cocultura , Feminino , Humanos , Técnicas In Vitro , Lacticaseibacillus rhamnosus/ultraestrutura , Microbiota , Microscopia Eletrônica , Odorantes , Tiossulfatos/administração & dosagem , Vagina/efeitos dos fármacos , Vagina/microbiologia
6.
NPJ Biofilms Microbiomes ; 5(1): 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583108

RESUMO

Biofilm-dispersal is a key determinant for further dissemination of biofilm-embedded bacteria. Recent evidence indicates that biofilm-dispersed bacteria have transcriptional features different from those of both biofilm and planktonic bacteria. In this study, the in vitro and in vivo phenotypic properties of Klebsiella pneumoniae cells spontaneously dispersed from biofilm were compared with those of planktonic and sessile cells. Biofilm-dispersed cells, whose growth rate was the same as that of exponential planktonic bacteria but significantly higher than those of sessile and stationary planktonic forms, colonized both abiotic and biotic surfaces more efficiently than their planktonic counterparts regardless of their initial adhesion capabilities. Microscopy studies suggested that dispersed bacteria initiate formation of microcolonies more rapidly than planktonic bacteria. In addition, dispersed cells have both a higher engulfment rate and better survival/multiplication inside macrophages than planktonic cells and sessile cells. In an in vivo murine pneumonia model, the bacterial load in mice lungs infected with biofilm-dispersed bacteria was similar at 6, 24 and 48 h after infection to that of mice lungs infected with planktonic or sessile bacteria. However, biofilm-dispersed and sessile bacteria trend to elicit innate immune response in lungs to a lesser extent than planktonic bacteria. Collectively, the findings from this study suggest that the greater ability of K. pneumoniae biofilm-dispersed cells to efficiently achieve surface colonization and to subvert the host immune response confers them substantial advantages in the first steps of the infection process over planktonic bacteria.


Assuntos
Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/imunologia , Fenótipo , Pneumonia Bacteriana/microbiologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Evasão da Resposta Imune , Imunidade Inata , Infecções por Klebsiella/imunologia , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Fagocitose , Pneumonia Bacteriana/imunologia , Fatores de Tempo
7.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481408

RESUMO

Some respiratory infections have been associated with dysbiosis of the intestinal microbiota. The underlying mechanism is incompletely understood, but cross talk between the intestinal microbiota and local immune cells could influence the immune response at distal mucosal sites. This has led to the concept of enhancing respiratory defenses by modulating the intestinal microbiota with exogenous supplementation of beneficial strains. In this study, we examined the effect of Lactobacillus plantarum CIRM653 on the inflammatory response induced by the pathogen Klebsiella pneumoniae Oral administration of L. plantarum CIRM653 to mice subsequently infected by K. pneumoniae via the nasal route (i) reduced the pulmonary inflammation response, with decreased numbers of lung innate immune cells (macrophages and neutrophils) and cytokines (mouse keratinocyte-derived chemokine [KC], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) in the bronchoalveolar fluid, and (ii) induced an immunosuppressive Treg response in lungs. In vitro coincubation of L. plantarum CIRM653 and K. pneumoniae with human dendritic cells and peripheral blood mononuclear cells resulted in decreased Th1 (IL-12p70 and interferon gamma [IFN-γ]) and Th17 (IL-23 and IL-17) and increased Treg (IL-10) cytokine levels compared to those observed for K. pneumoniae-infected cells. Neither K. pneumoniae nor L. plantarum CIRM653 had any effect on cytokine production by intestinal epithelial cells in vitro, but the induction of the NF-κB pathway and IL-8 and IL-6 production by K. pneumoniae in airway epithelial cells was significantly reduced when the pathogen was coincubated with L. plantarum CIRM653. The remote IL-10-mediated modulation of the K. pneumoniae inflammatory response by L. plantarum CIRM653 supports the concept of immunomodulation by beneficial bacteria through the gut-lung axis.


Assuntos
Inflamação/microbiologia , Infecções por Klebsiella/imunologia , Lactobacillus plantarum/fisiologia , Pneumonia Bacteriana/microbiologia , Animais , Infecções por Klebsiella/metabolismo , Klebsiella pneumoniae , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/patologia , Probióticos
8.
Front Microbiol ; 8: 1790, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970823

RESUMO

Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium, but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium. For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii, which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated α values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii, but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.

9.
FEMS Microbiol Rev ; 41(Supp_1): S49-S70, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28830096

RESUMO

Probiotics are defined as 'live microorganisms which when administered in adequate amounts confer a health benefit on the host'. So, to consider a microorganism as a probiotic, a demonstrable beneficial effect on the health host should be shown as well as an adequate defined safety status and the capacity to survive transit through the gastrointestinal tract and to storage conditions. In this review, we present an overview of the murine colitis models currently employed to test the beneficial effect of the probiotic strains as well as an overview of the probiotics already tested. Our aim is to highlight both the importance of the adequate selection of the animal model to test the potential probiotic strains and of the value of the knowledge generated by these in vivo tests.


Assuntos
Colite/terapia , Modelos Animais de Doenças , Probióticos/uso terapêutico , Animais , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Colite/induzido quimicamente , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Humanos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Camundongos
10.
Front Microbiol ; 8: 1226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713353

RESUMO

Faecalibacterium prausnitzii is a major member of the Firmicutes phylum and one of the most abundant bacteria in the healthy human microbiota. F. prausnitzii depletion has been reported in several intestinal disorders, and more consistently in Crohn's disease (CD) patients. Despite its importance in human health, only few microbiological studies have been performed to isolate novel F. prausnitzii strains in order to better understand the biodiversity and physiological diversity of this beneficial commensal species. In this study, we described a protocol to isolate novel F. prausnitzii strains from feces of healthy volunteers as well as a deep molecular and metabolic characterization of these isolated strains. These F. prausnitzii strains were classified in two phylogroups and three clusters according to 16S rRNA sequences and results support that they would belong to two different genomospecies or genomovars as no genome sequencing has been performed in this work. Differences in enzymes production, antibiotic resistance and immunomodulatory properties were found to be strain-dependent. So far, all F. prausnitzii isolates share some characteristic such as (i) the lack of epithelial cells adhesion, plasmids, anti-microbial, and hemolytic activity and (ii) the presence of DNAse activity. Furthermore, Short Chain Fatty Acids (SCFA) production was assessed for the novel isolates as these products influence intestinal homeostasis. Indeed, the butyrate production has been correlated to the capacity to induce IL-10, an anti-inflammatory cytokine, in peripheral blood mononuclear cells (PBMC) but not to the ability to block IL-8 secretion in TNF-α-stimulated HT-29 cells, reinforcing the hypothesis of a complex anti-inflammatory pathway driven by F. prausnitzii. Altogether, our results suggest that some F. prausnitzii strains could represent good candidates as next-generation probiotic.

11.
Front Microbiol ; 7: 592, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199924

RESUMO

The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health). Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients' organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections.

12.
Front Microbiol ; 7: 608, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199937

RESUMO

Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.

13.
J Nutr Sci ; 4: e22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157580

RESUMO

The enterohormone glucagon-like peptide-1 (GLP-1) is required to amplify glucose-induced insulin secretion that facilitates peripheral glucose utilisation. Alteration in GLP-1 secretion during obesity has been reported but is still controversial. Due to the high adaptability of intestinal cells to environmental changes, we hypothesised that the density of GLP-1-producing cells could be modified by nutritional factors to prevent the deterioration of metabolic condition in obesity. We quantified L-cell density in jejunum samples collected during Roux-en-Y gastric bypass in forty-nine severely obese subjects analysed according to their fat consumption. In mice, we deciphered the mechanisms by which a high-fat diet (HFD) makes an impact on enteroendocrine cell density and function. L-cell density in the jejunum was higher in obese subjects consuming >30 % fat compared with low fat eaters. Mice fed a HFD for 8 weeks displayed an increase in GLP-1-positive cells in the jejunum and colon accordingly to GLP-1 secretion. The regulation by the HFD appears specific to GLP-1-producing cells, as the number of PYY (peptide YY)-positive cells remained unchanged. Moreover, genetically obese ob/ob mice did not show alteration of GLP-1-positive cell density in the jejunum or colon, suggesting that obesity per se is not sufficient to trigger the mechanism. The higher L-cell density in HFD-fed mice involved a rise in L-cell terminal differentiation as witnessed by the increased expression of transcription factors downstream of neurogenin3 (Ngn3). We suggest that the observed increase in GLP-1-positive cell density triggered by high fat consumption in humans and mice might favour insulin secretion and therefore constitute an adaptive response of the intestine to balance diet-induced insulin resistance.

14.
mBio ; 6(2)2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25900655

RESUMO

UNLABELLED: Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified on the basis of human clinical data. The mechanisms underlying its beneficial effects are still unknown. Gnotobiotic mice harboring F. prausnitzii (A2-165) and Escherichia coli (K-12 JM105) were subjected to 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis. The inflammatory colitis scores and a gas chromatography-time of flight (GC/TOF) mass spectrometry-based metabolomic profile were monitored in blood, ileum, cecum, colon, and feces in gnotobiotic mice. The potential anti-inflammatory metabolites were tested in vitro. We obtained stable E. coli and F. prausnitzii-diassociated mice in which E. coli primed the gastrointestinal tract (GIT), allowing a durable and stable establishment of F. prausnitzii. The disease activity index, histological scores, myeloperoxidase (MPO) activity, and serum cytokine levels were significantly lower in the presence of F. prausnitzii after TNBS challenge. The protective effect of F. prausnitzii against colitis was correlated to its implantation level and was linked to overrepresented metabolites along the GIT and in serum. Among 983 metabolites in GIT samples and serum, 279 were assigned to known chemical reactions. Some of them, belonging to the ammonia (α-ketoglutarate), osmoprotective (raffinose), and phenolic (including anti-inflammatory shikimic and salicylic acids) pathways, were associated with a protective effect of F. prausnitzii, and the functional link was established in vitro for salicylic acid. We show for the first time that F. prausnitzii is a highly active commensal bacterium involved in reduction of colitis through in vivo modulation of metabolites along the GIT and in the peripheral blood. IMPORTANCE: Inflammatory bowel diseases (IBD) are characterized by low proportions of F. prausnitzii in the gut microbiome. This commensal bacterium exhibits anti-inflammatory effects through still unknown mechanisms. Stable monoassociated rodents are actually not a reproducible model to decipher F. prausnitzii protective effects. We propose a new gnotobiotic rodent model providing mechanistic clues. In this model, F. prausnitzii exhibits protective effects against an acute colitis and a protective metabolic profile is linked to its presence along the digestive tract. We identified a molecule, salicylic acid, directly involved in the protective effect of F. prausnitzii. Targeting its metabolic pathways could be an attractive therapeutic strategy in IBD.


Assuntos
Anti-Inflamatórios/metabolismo , Firmicutes/metabolismo , Animais , Análise Química do Sangue , Colite/induzido quimicamente , Colite/patologia , Fezes/química , Mucosa Intestinal/química , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos BALB C , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
BMC Microbiol ; 15: 67, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25888448

RESUMO

BACKGROUND: The human gut houses one of the most complex and abundant ecosystems composed of up to 10(13)-10(14) microorganisms. The importance of this intestinal microbiota is highlighted when a disruption of the intestinal ecosystem equilibrium appears (a phenomenon called dysbiosis) leading to an illness status, such as inflammatory bowel diseases (IBD). Indeed, the reduction of the commensal bacterium Faecalibacterium prausnitzii (one of the most prevalent intestinal bacterial species in healthy adults) has been correlated with several diseases, including IBD, and most importantly, it has been shown that this bacterium has anti-inflammatory and protective effects in pre-clinical models of colitis. Some dysbiosis disorders are characterized by functional and physiological alterations. Here, we report the beneficial effects of F. prausnitzii in the physiological changes induced by a chronic low-grade inflammation in a murine model. Chronic low-grade inflammation and gut dysfunction were induced in mice by two episodes of dinitro-benzene sulfonic acid (DNBS) instillations. Markers of inflammation, gut permeability, colonic serotonin and cytokine levels were studied. The effects of F. prausnitzii strain A2-165 and its culture supernatant (SN) were then investigated. RESULTS: No significant differences were observed in classical inflammation markers confirming that inflammation was subclinical. However, gut permeability, colonic serotonin levels and the colonic levels of the cytokines IL-6, INF-γ, IL-4 and IL-22 were higher in DNBS-treated than in untreated mice. Importantly, mice treated with either F. prausnitzii or its SN exhibited significant decreases in intestinal permeability, tissue cytokines and serotonin levels. CONCLUSIONS: Our results show that F. prausnitzii and its SN had beneficial effects on intestinal epithelial barrier impairment in a chronic low-grade inflammation model. These observations confirm the potential of this bacterium as a novel probiotic treatment in the management of gut dysfunction and low-grade inflammation.


Assuntos
Clostridiales/imunologia , Enterite/patologia , Enterite/prevenção & controle , Animais , Benzenossulfonatos/toxicidade , Colo/patologia , Citocinas/análise , Modelos Animais de Doenças , Enterite/induzido quimicamente , Camundongos , Permeabilidade , Serotonina/análise
16.
Microb Cell Fact ; 14: 48, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25889559

RESUMO

This paper concerns the procedure and the scientific approach to obtain market authorization for a microorganism to be recognized as a novel food with a health claim. Microorganisms that have not been traditionally used during food production in Europe prior to 1997 are considered as novel foods, which should undergo an in-depth characterization and safety assessment before being authorized on the European market. If a novel food bacterium is claimed to provide a beneficial effect on health, these claims must also be investigated before they can be authorized. Some requirements to obtain novel food certification are shared with those required to obtain a health claim. Although regulation exists that deals with these issues for foods in general, bacteria in food raise a specific set of questions that are only minimally addressed in official documentation. We propose a framework and suggest a list of criteria that should be assessed to obtain marketing authorization and health claim for a bacterium in accordance with European health policy.


Assuntos
Qualidade de Produtos para o Consumidor/normas , Inspeção de Alimentos/normas , Microbiologia de Alimentos/normas , Legislação sobre Alimentos/normas , Europa (Continente) , Inspeção de Alimentos/métodos , Microbiologia de Alimentos/métodos , Guias como Assunto , Intestinos/microbiologia , Microbiota , Saúde Pública/métodos , Saúde Pública/normas , Fatores de Tempo
19.
Hum Vaccin Immunother ; 10(6): 1611-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732667

RESUMO

Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a "proof-of-concept," our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces.


Assuntos
Terapia Biológica/métodos , Colite/terapia , Fatores Imunológicos/imunologia , Imunoterapia/métodos , Interleucina-10/imunologia , Lactococcus lactis/metabolismo , Animais , Colite/patologia , Citocinas/análise , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Fatores Imunológicos/genética , Fatores Imunológicos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/crescimento & desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Serotonina/análise , Baço/imunologia , Resultado do Tratamento
20.
Gut Microbes ; 5(2): 146-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637606

RESUMO

Faecalibacterium prausnitzii is a major commensal bacterium, and its prevalence is often decreased in conditions of intestinal dysbiosis. The phylogenic identity of this bacterium was described only recently. It is still poorly characterized, and its specific growth requirements in the human gastrointestinal tract are not known. In this review, we consider F. prausnitzii metabolism, its ecophysiology in both humans and animals, and the effects of drugs and nutrition on its population. We list important questions about this beneficial and ubiquitous commensal bacterium that it would be valuable to answer.


Assuntos
Ecologia , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/fisiologia , Intestinos/microbiologia , Bactérias Gram-Positivas/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA