Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(25): 26762-26779, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947816

RESUMO

Drug repurposing is a method of investigating new therapeutic applications for previously approved medications. This repurposing approach to "old" medications is now highly efficient, simple to arrange, and cost-effective and poses little risk of failure in treating a variety of disorders, including cancer. Drug repurposing for cancer therapy is currently a key topic of study. It is a way of exploring recent therapeutic applications for already-existing drugs. Theoretically, the repurposing strategy has various advantages over the recognized challenges of creating new molecular entities, including being faster, safer, easier, and less expensive. In the real world, several medications have been repurposed, including aspirin, metformin, and chloroquine. However, doctors and scientists address numerous challenges when repurposing drugs, such as the fact that most drugs are not cost-effective and are resistant to bacteria. So the goal of this review is to gather information regarding repurposing pharmaceuticals to make them more cost-effective and harder for bacteria to resist. Cancer patients are more susceptible to bacterial infections. Due to their weak immune systems, antibiotics help protect them from a variety of infectious diseases. Although antibiotics are not immune boosters, they do benefit the defense system by killing bacteria and slowing the growth of cancer cells. Their use also increases the therapeutic efficacy and helps avoid recurrence. Of late, antibiotics have been repurposed as potent anticancer agents because of the evolutionary relationship between the prokaryotic genome and mitochondrial DNA of eukaryotes. Anticancer antibiotics that prevent cancer cells from growing by interfering with their DNA and blocking growth of promoters, which include anthracyclines, daunorubicin, epirubicin, mitoxantrone, doxorubicin, and idarubicin, are another type of FDA-approved antibiotics used to treat cancer. According to the endosymbiotic hypothesis, prokaryotes and eukaryotes are thought to have an evolutionary relationship. Hence, in this study, we are trying to explore antibiotics that are necessary for treating diseases, including cancer, helping people reduce deaths associated with various infections, and substantially extending people's life expectancy and quality of life.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39054005

RESUMO

Per- and polyfluoroalkyl substances (PFAS) comprise many chemicals with strong carbon-carbon and carbon-fluorine bonds and have extensive industrial applications in manufacturing several consumer products. The solid covalent bonding makes them more persistent in the environment and stays away from all types of degradation, naming them 'forever chemicals.' Zebrafish (Danio rerio) was used to evaluate the genotoxic and cytotoxic effects of legacy PFAS, Perfluorooctane sulfonate (PFOS), and its alternatives, such as Perfluoro-2-methyl-3-oxahexanoic acid ammonium (GenX) and 7H-Perfluoro-3,6-dioxa-4-methyl-octane-1-sulfonic acid (Nafion by-product 2 [NBP2]) upon single and combined exposure at an environmental concentration of 10 µg/L for 48-h. Erythrocyte micronucleus cytome assay (EMNCA) revealed an increased frequency of micronuclei (MN) in fish erythrocytes with a significant increase in NBP2-treated fish. The order of genotoxicity noticed was NBP2 > PFOS > Mixture > GenX in D. rerio. Fish exposed to PFOS and its alternatives in single and combined experiments did not cause any significant difference in nuclear abnormalities. However, PFOS and combined exposure positively inhibit cytokinesis, resulting in an 8.16 and 7.44-fold-change increase of binucleated cells. Besides, statistically, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) content indicate oxidative stress in D. rerio. In addition, 'forever chemicals' resulted in cytotoxicity, as evident through changes in nucleus width to the erythrocyte length in NBP2 and mixture exposure groups. The findings revealed that PFAS alternative NBP2 is more toxic than PFOS in inducing DNA damage and cytotoxicity. In addition, all three tested 'forever chemicals' induced ROS and lipid peroxidation after individual and combined exposure. The present work is the first to concern the genotoxicity and cytotoxicity of 'forever chemicals' in the aquatic vertebrate D. rerio.


Assuntos
Ácidos Alcanossulfônicos , Dano ao DNA , Fluorocarbonos , Testes para Micronúcleos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fluorocarbonos/toxicidade , Testes para Micronúcleos/métodos , Ácidos Alcanossulfônicos/toxicidade , Dano ao DNA/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mutagênicos/toxicidade
3.
Semin Cancer Biol ; 100: 1-16, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503384

RESUMO

Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Neoplasias/genética , Neoplasias/terapia , Transição Epitelial-Mesenquimal/genética , Diferenciação Celular , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral
4.
Chin J Integr Med ; 30(1): 75-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340205

RESUMO

Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Suplementos Nutricionais , Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico
5.
Appl Biochem Biotechnol ; 195(12): 7338-7378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37000353

RESUMO

The pathophysiology of lung cancer is dependent on the dysregulation in the apoptotic and autophagic pathways. The intricate link between apoptosis and autophagy through shared signaling pathways complicates our understanding of how lung cancer pathophysiology is regulated. As drug resistance is the primary reason behind treatment failure, it is crucial to understand how cancer cells may respond to different therapies and integrate crosstalk between apoptosis and autophagy in response to them, leading to cell death or survival. Thus, in this study, we have tried to evaluate the crosstalk between autophagy and apoptosis in A549 lung cancer cell line that could be modulated by employing a combination therapy of metformin (6 mM), an anti-diabetic drug, with gedunin (12 µM), an Hsp90 inhibitor, to provide insights into the development of new cancer therapeutics. Our results demonstrated that metformin and gedunin were cytotoxic to A549 lung cancer cells. Combination of metformin and gedunin generated ROS and promoted MMP loss and DNA damage. The combination further increased the expression of AMPKα1 and promoted the nuclear localization of AMPKα1/α2. The expression of Hsp90 was downregulated, further decreasing the expression of its clients, EGFR, PIK3CA, AKT1, and AKT3. Inhibition of the EGFR/PI3K/AKT pathway upregulated TP53 and inhibited autophagy. The combination was promoting nuclear localization of p53; however, some cytoplasmic signals were also detected. Further increase in the expression of caspase 9 and caspase 3 was observed. Thus, we concluded that the combination of metformin and gedunin upregulates apoptosis by inhibiting the EGFR/PI3K/AKT pathway and autophagy in A549 lung cancer cells.


Assuntos
Antineoplásicos , Apoptose , Autofagia , Limoninas , Neoplasias Pulmonares , Metformina , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Humanos , Células A549 , Apoptose/efeitos dos fármacos , Metformina/farmacologia , Limoninas/farmacologia , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Linhagem Celular , Citotoxinas/farmacologia , Sinergismo Farmacológico , Espécies Reativas de Oxigênio/metabolismo , Combinação de Medicamentos , Dano ao DNA/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Núcleo Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo
6.
Arch Biochem Biophys ; 736: 109537, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738981

RESUMO

Heat shock protein 27 is a type of molecular chaperone whose expression gets up-regulated due to reaction towards different stressful triggers including anticancer treatments. It is known to be a major player of resistance development in cancer cells, whereby cells are sheltered against the therapeutics that normally activate apoptosis. Heat shock protein 27 (HSP27) is one of the highly expressed proteins during various cellular insults and is a strong tumor survival factor. HSP27 influences various cellular pathways associated with cancer cell survival and growth such as apoptosis, autophagy, metastasis, angiogenesis, epithelial to mesenchymal transition, etc. HSP27 is molecular machinery which prevents the clumping of numerous substrates or client proteins which get mutated in cancer. It has been reported in several studies that targeting HSP27 is difficult because of its dynamic structure and absence of an ATP-binding site. Here, in this review, we have summarized different modulators of HSP27 and their mechanism of action as well. Effect of deregulated HSP27 in various cancer models, limitations of targeting HSP27, resistance against the conventional drugs generated due to the overexpression of HSP27, and measures to counteract this effect have also been discussed here in detail.


Assuntos
Proteínas de Choque Térmico HSP27 , Neoplasias , Humanos , Transição Epitelial-Mesenquimal , Apoptose
7.
Mol Biol Rep ; 50(3): 2701-2711, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538171

RESUMO

By the end of 2019, COVID-19 was reported in Wuhan city of China, and through human-human transmission, this virus spread worldwide and became a pandemic. Initial symptoms of the disease include fever, cough, loss of smell, taste, and shortness of breath, but a decrease in the oxygen levels in the body leads, and pneumonia may ultimately lead to the patient's death. However, the symptoms vary from patient to patient. To understand COVID-19 disease pathogenesis, researchers have tried to understand the cellular pathways that could be targeted to suppress viral replication. Thus, this article reviews the markers that could be targeted to inhibit viral replication by inhibiting the translational initiation complex/regulatory kinases and upregulating host autophagic flux that may lead to a reduction in the viral load. The article also highlights that mTOR inhibitors may act as potential inhibitors of viral replication. mTOR inhibitors such as metformin may inhibit the interaction of SARS-CoV-2 Nsp's and ORFs with mTORC1, LARP1, and 4E-BP. They may also increase autophagic flux by decreasing protein degradation via inhibition of Skp2, further promoting viral cell death. These events result in cell cycle arrest at G1 by p27, ultimately causing cell death.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Inibidores de MTOR , Proteínas Adaptadoras de Transdução de Sinal , Replicação Viral , Serina-Treonina Quinases TOR
8.
Life Sci ; 306: 120852, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917940

RESUMO

Cells are exposed to several environmental or chemical stressors that may cause DNA damage. DNA damage alters the normal functioning of the cell and contributes to several diseases, including cancer. Cells either induce DNA damage repair pathways or programmed cell death pathways to prevent disease formation depending on the severity of the stress and the damage caused. The DNA repair mechanisms are crucial to maintaining genome stability. During this adaptive response, the heat shock proteins (HSPs) are the key players. HSPs are overexpressed during genotoxic stress, but the role of different molecular players in the interaction between HSPs and DNA repair proteins is still poorly understood. As DNA damage promotes genomic instability and proteotoxic stress, modulating the protein quality control systems like the HSPs network could be a promising strategy for targeting disease pathologies associated with genomic instability, such as cancer. Hence, this review highlights the role of HSPs in DNA repair pathways. Further, the review also provides an outlook on the role of genomic instability and protein homeostasis in cancer, which is crucial to understanding the mechanisms behind its survival and developing novel targeted therapies.


Assuntos
Neoplasias , Proteostase , Dano ao DNA/genética , Reparo do DNA , Instabilidade Genômica , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteostase/genética
9.
Front Oncol ; 12: 852424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359388

RESUMO

Cancer formation is a highly regulated and complex process, largely dependent on its microenvironment. This complexity highlights the need for developing novel target-based therapies depending on cancer phenotype and genotype. Autophagy, a catabolic process, removes damaged and defective cellular materials through lysosomes. It is activated in response to stress conditions such as nutrient deprivation, hypoxia, and oxidative stress. Oxidative stress is induced by excess reactive oxygen species (ROS) that are multifaceted molecules that drive several pathophysiological conditions, including cancer. Moreover, autophagy also plays a dual role, initially inhibiting tumor formation but promoting tumor progression during advanced stages. Mounting evidence has suggested an intricate crosstalk between autophagy and ROS where they can either suppress cancer formation or promote disease etiology. This review highlights the regulatory roles of autophagy and ROS from tumor induction to metastasis. We also discuss the therapeutic strategies that have been devised so far to combat cancer. Based on the review, we finally present some gap areas that could be targeted and may provide a basis for cancer suppression.

10.
J Biomol Struct Dyn ; 40(21): 10771-10782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34256681

RESUMO

The SARS-CoV-2 contagion has had a huge impact on world population. It has been observed that despite massive spread of the contagion in India particularly during the second wave, the overall case fatality rates remain low. This prompted us to look into dietary factors that can possibly modulate the viral impact and/or host response. In silico studies were carried out on forty-two commonly used spices and their 637 known active compounds with an aim of identifying such compounds that may have propensity to reduce viral impact or boost host immune response. We chose to study SARS-Cov-2 helicase on account of its functional importance in maintaining viral load within the host, and the human tank binding protein (TBK1) for its important role in host immunity. We carried out in silico virtual screening, docking studies with 637 phytochemical against these two proteins, using in silico methods. Upon assessing the strength of the ligand-target interactions and post simulation binding energy profile, our study identifies procyanidin-B4 from bay leaf, fenugreekine from fenugreek seed and gallotannin from pomegranate seed as active interactors that docked to viral helicase. Similarly, we identified eruboside B from garlic, gallotannin from pomegranate seed, as strong interacting partners to human TBK1. Our studies thus present dietary spice constituents as potential protagonists for further experimentation to understand how spices in the diet might help the hosts in countering the viral assault and mount a robust protective response against COVID and other infections.Communicated by Ramaswamy H. Sarma.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Especiarias , SARS-CoV-2 , Taninos Hidrolisáveis , Taninos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
11.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830158

RESUMO

Age-associated neurodegenerative diseases are known to have "impaired protein clearance" as one of the key features causing their onset and progression. Hence, homeostasis is the key to maintaining balance throughout the cellular system as an organism ages. Any imbalance in the protein clearance machinery is responsible for accumulation of unwanted proteins, leading to pathological consequences-manifesting in neurodegeneration and associated debilitating outcomes. Multiple processes are involved in regulating this phenomenon; however, failure to regulate the autophagic machinery is a critical process that hampers the protein clearing pathway, leading to neurodegeneration. Another important and widely known component that plays a role in modulating neurodegeneration is a class of proteins called sirtuins. These are class III histone deacetylases (HDACs) that are known to regulate various vital processes such as longevity, genomic stability, transcription and DNA repair. These enzymes are also known to modulate neurodegeneration in an autophagy-dependent manner. Considering its genetic relevance and ease of studying disease-related endpoints in neurodegeneration, the model system Caenorhabditis elegans has been successfully employed in deciphering various functional outcomes related to critical protein molecules, cell death pathways and their association with ageing. This review summarizes the vital role of sirtuins and autophagy in ageing and neurodegeneration, in particular highlighting the knowledge obtained using the C. elegans model system.


Assuntos
Envelhecimento , Autofagia , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Doenças Neurodegenerativas/metabolismo , Sirtuínas/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Caenorhabditis elegans/metabolismo , Humanos
12.
Environ Sci Pollut Res Int ; 28(30): 40311-40321, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32970259

RESUMO

The World Health Organization (WHO) recognized a novel coronavirus as the causative agent of a new form of pneumonia. It was subsequently named COVID-19 and reported as the source of a respiratory disease occurrence starting in December 2019 in Wuhan, Hubei Province, China. It has been affirmed a public health emergency of international significance by the World Health Organization. It is regarded as a subset of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS); COVID-19 is triggered by a betacoronavirus called SARS-CoV-2, which affects the lower respiratory tract and occurs in humans as pneumonia. A variety of drugs, such as remdesivir and favipiravir, are currently undergoing clinical trials to evaluate for the management of COVID-19. The effect of the pandemic as well as the epidemic that follows through the life cycles of various recycled plastic is evaluated, particularly those required for personal safety and health care. In response to the growth in COVID-19 cases worldwide, the energy and environmental impacts of these lifecycle management have risen rapidly. However, significant hazardous waste management concerns arise due to the need to assure the elimination of residual pathogens in household and medical wastes. This review article summarizes the preventive and environmental management of COVID-19.


Assuntos
COVID-19 , Conservação dos Recursos Naturais , Humanos , Pandemias , SARS-CoV-2 , Organização Mundial da Saúde
13.
Biochem Biophys Rep ; 24: 100815, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33024841

RESUMO

BACKGROUND: Apolipoprotein A-I (apoA-I) protects against atherosclerosis and participates in the removal of excess cellular cholesterol from peripheral organs. Several naturally occurring apoA-I mutations are associated with familial systemic amyloidosis, with deposition of amyloid aggregates in peripheral organs, resulting in multiple organ failure. Systematic studies on naturally occurring variants are needed to delineate their roles and involvement in pathogenesis. METHODS: We performed a comparative structure-function analysis of five naturally occurring apoA-I variants and the wild-type protein. Circular dichroism, Fourier-transform infrared spectroscopy, thioflavin T and congo red fluorescence assays, thermal, chemical, and proteolytic stability assays, and 1,2-Dimyristoyl-sn-glycero-3-phosphocholine clearance analyses were used to assess the effects of mutations on the structure, function, stability, aggregation, and proteolytic susceptibility of the proteins to explore the mechanisms underlying amyloidosis and hypercholesterolemia. RESULTS: We observed structural changes in the mutants independent of fibril formation, suggesting the influence of the surrounding environment. The mutants were involved in aggregate formation to varying degree; L170P, R173P, and V156E showed an increased propensity to aggregate under different physiological conditions. ß sheet formation indicates that L170P and R173P participate in amyloid formation. Compared to WT, V156E and L170P exhibited higher capacity for lipid clearance. CONCLUSIONS: The selected point mutations, including those outside the hot spot regions of apoA-I structure, perturb the physiochemical and conformational behavior of the protein, influencing its function. GENERAL SIGNIFICANCE: The study provides insights into the structure-function relationships of naturally occurring apoA-I variants outside the hot spot mutation sites.

14.
Life Sci ; 256: 118000, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32585246

RESUMO

AIMS: Hsp90 is regarded as an important therapeutic target in cancer treatment. Client proteins of Hsp90 like Beclin-1, PI3K, and AKT, are associated with tumor development, poor prognosis, and resistance to cancer therapies. This study aims to analyze the role of Gedunin, an Hsp-90 inhibitor, in mediation of crosstalk between apoptosis and autophagy by targeting Beclin-1:Bcl-2 interaction, and ER stress. MAIN METHODS: A549 cells were treated with different concentrations of gedunin, and inhibitory rate was evaluated by MTT assay. Effect of gedunin on generation of reactive oxygen species, mitochondrial membrane potential, and chromatin condensation was studied by staining methods like DCFH-DA, MitoTracker, and DAPI. Expression of EGFR, PIK3CA, AKT, marker genes for apoptosis and autophagy were studied using semi-quantitative RT-PCR. Interaction study of Hsp90:Beclin-1:Bcl-2 was done by immunoprecipitation analysis. Protein expression of autophagy and apoptosis markers along with Grp78, Hsp70, and Hsp90 was analyzed by immunoblotting. KEY FINDINGS: Gedunin exerts cytotoxic effects, causes increase in ROS generation, downregulates mitochondrial membrane potential and induces loss in DNA integrity. mRNA expression analysis revealed that gedunin sensitized A549 cells towards apoptosis by downregulating EGFR, PIK3CA, AKT, and autophagy. Gedunin also inhibited interaction between Hsp90:Beclin-1:Bcl-2, leading to downregulation of autophagy (Beclin-1, Atg5-12 complex, and LC3) and antiapoptotic protein Bcl-2, which may result in ER stress-induced apoptosis. Moreover, Hsp90 inhibition by gedunin did not cause upregulation of Hsp70 expression. SIGNIFICANCE: Gedunin induces apoptosis in lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and autophagy downregulation, thus making gedunin a good drug lead for targeting lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Limoninas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Antineoplásicos Fitogênicos/administração & dosagem , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Limoninas/administração & dosagem , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Glycobiology ; 30(1): 49-57, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31508802

RESUMO

Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.


Assuntos
Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/genética , Neoplasias/genética , Animais , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Humanos , Agregados Proteicos
16.
Anticancer Agents Med Chem ; 19(2): 184-193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30370860

RESUMO

BACKGROUND: Despite a number of measures having been taken for cancer management, it is still the second leading cause of death worldwide. p53 is the protein principally being targeted for cancer treatment. Targeting p53 localization may be an effective strategy in chemotherapy as it controls major cell death pathways based on its cellular localization. Anthraquinones are bioactive compounds widely being considered as potential anticancer agents but their mechanism of action is yet to be explored. It has been shown that the number and position of hydroxyl groups within the different anthraquinones like Emodin and Chrysophanol reflects the number of intermolecular hydrogen bonds which affect its activity. Emodin contains an additional OH group at C-3, in comparison to Chrysophanol and may differentially regulate different cell death pathways in cancer cell. OBJECTIVE: The present study was aimed to investigate the effect of two anthraquinones Emodin and Chrysophanol on induction of different cell death pathways in human lung cancer cells (A549 cell line) and whether single OH group difference between these compounds differentially regulate cell death pathways. METHODS: The cytotoxic effect of Emodin and Chrysophanol was determined by the MTT assay. The expression of autophagy and apoptosis marker genes at mRNA and protein level after treatment was checked by the RT-PCR and Western Blot, respectively. For cellular localization of p53 after treatment, we performed immunofluorescence microscopy. RESULTS: We observed that both compounds depicted a dose-dependent cytotoxic response in A549 cells which was in concurrence with the markers associated with oxidative stress such as an increase in ROS generation, decrease in MMP and DNA damage. We also observed that both compounds up-regulated the p53 expression where Emodin causes nuclear p53 localization, which leads to down-regulation in mTOR expression and induces autophagy while Chrysophanol inhibits p53 translocation into nucleus, up-regulates mTOR expression and inhibits autophagy. CONCLUSION: From this study, it may be concluded that the structural difference of single hydroxyl group may switch the mechanism from one pathway to another which could be useful in the future to improve anticancer treatment and help in the development of new selective therapies.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Emodina/farmacologia , Hidróxidos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteína Supressora de Tumor p53/antagonistas & inibidores , Células A549 , Antraquinonas/química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Emodina/química , Humanos , Hidróxidos/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
17.
3 Biotech ; 8(8): 361, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30105186

RESUMO

Diabetes is a deteriorating metabolic ailment which negatively affects different organs; however, its prime target is insulin secreting pancreatic ß-cells. Although, different medications have been affirmed for diabetes management and numerous drugs are undergoing clinical trials, no significant breakthrough has yet been achieved. Available drugs either show some side effects or provide only short-term alleviation. The rationales behind the failure of current anti-diabetic treatment strategy are association of complex patho-physiologies and participation of various organs. Consequently, there is a critical need to search for multi-effect drugs that might impede various patho-physiological mechanisms related to diabetes. Fortunately, one natural compound could act on several diabetes linked targets. Thus, natural compounds might be regarded as a viable alternative choice to improve the progression as well as side effects of diabetes. Despite the fact that immense literatures are available on natural compounds indicating promising outcomes against diabetes, more systematic studies are still needed to establish them as effective anti-diabetic agents. Till date, we are unable to access all the information regarding modes of action, toxicity risks and physicochemical properties of anti-diabetic natural compounds on one platform. Hence, anti-diabetic natural compounds database (ADNCD) has been created to categorize each anti-diabetic natural compound on the basis of their mode of action and to provide compendious information of their physicochemical properties and toxicity risks. In short, ADNCD has imperative information for the researchers working in the field of diabetes drug development.

18.
Cell Signal ; 45: 71-80, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410282

RESUMO

The accumulation of aggregate-prone proteins is a major representative of many neurological disorders, including Parkinson's disease (PD) wherein the cellular clearance mechanisms, such as the ubiquitin-proteasome and autophagy pathways are impaired. PD, known to be associated with multiple genetic and environmental factors, is characterized by the aggregation of α-synuclein protein and loss of dopaminergic neurons in midbrain. This disease is also associated with other cardiovascular ailments. Herein, we report our findings from studies on the effect of hyper and hypo-osmotic induced toxicity representing hyper and hypotensive condition as an extrinsic epigenetic factor towards modulation of Parkinsonism, using a genetic model Caenorhabditis elegans (C. elegans). Our studies showed that osmotic toxicity had an adverse effect on α-synuclein aggregation, autophagic puncta, lipid content and oxidative stress. Further, we figure that reduced autophagic activity may cause the inefficient clearance of α-synuclein aggregates in osmotic stress toxicity, thereby promoting α-synuclein deposition. Pharmacological induction of autophagy by spermidine proved to be a useful mechanism for protecting cells against the toxic effects of these proteins in such stress conditions. Our studies provide evidence that autophagy is required for the removal of aggregated proteins in these conditions. Studying specific autophagy pathways, we observe that the osmotic stress induced toxicity was largely associated with atg-7 and lgg-1 dependent autophagy pathway, brought together by involvement of mTOR pathway. This represents a unifying pathway to disease in hyper- and hypo-osmotic conditions within PD model of C. elegans.


Assuntos
Autofagia , Caenorhabditis elegans , Modelos Animais de Doenças , Pressão Osmótica , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Metabolismo dos Lipídeos , Proteínas Associadas aos Microtúbulos/metabolismo , Estresse Oxidativo , Espermidina/farmacologia , Ubiquitina/metabolismo , alfa-Sinucleína/genética
19.
Int J Biochem Cell Biol ; 96: 90-95, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355754

RESUMO

Loss of p53 function via mutation is a very common cause of human cancers. Recent studies have provided evidence on presence of self aggregated p53 in cancer cells leading to its altered functions towards cause of cancer. The general notion has been that mutated p53 exposes adhesive sites that promote self aggregation, however a complete mechanistic understanding to this has been lacking. We embarked on the present study towards exploring the differential aggregation pattern in cells expressing mutated TP53 (HaCaT keratinocytes) vs those expressing the wild type copy of the p53 protein (A549 lung cancer cell line). The studies led us to interesting observation that formation of p53 protein aggregates is not always associated with TP53 mutation. The A549 lung cancer cells, having wild type TP53, showed the appearance of p53 protein aggregates, while no protein aggregates were observed in normal HaCaT keratinocytes carrying mutant TP53. We went on to study the effect of blocking protein aggregation by emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) and figured that inhibiting p53 protein aggregation can elevate the level of autophagy in A549 lung cancer cell line while there is no significant effect on autophagy in normal non-cancerous HaCaT cells. Moreover, ATG5 was found to be coaggregated with p53 aggregates which dissociated after emodin treatment, indicating further induction of autophagy in A549 cells only. From these observations, we conclude that the increased level of autophagy might be the mechanism for the removal of p53 protein aggregates which restores p53 function in A549 cells after emodin treatment .This encourages further studies towards deciphering related mechanistic aspects vis-à-vis potential therapeutic strategies against cancer.


Assuntos
Autofagia/efeitos dos fármacos , Emodina/farmacologia , Neoplasias Pulmonares/metabolismo , Agregados Proteicos/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteína Supressora de Tumor p53/genética
20.
J Nat Med ; 72(4): 837-845, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24677095

RESUMO

The antidyslipidemic effect of the ethanolic extract of Dysoxylum binectariferum stem bark and its major active constituent rohitukine was evaluated in a high fat diet (HFD)-fed dyslipidemic rat model. Chronic feeding of ethanolic extract (200 mg/kg) in HFD-fed rats showed significant lipid lowering activity. The bioassay guided fractionation of ethanolic extract resulted in the identification of known alkaloid rohitukine as major active constituent. Rohitukine (50 mg/kg) significantly decreased the plasma levels of total cholesterol (24 %), phospholipids (25 %), triglycerides (27 %), very low density lipoprotein (27 %) and low density lipoprotein (32 %) accompanied with an increase in high density lipoprotein (21 %). The present study demonstrated that ethanolic extract of Dysoxylum binectariferum stem bark and its major constituent rohitukine both have antidyslipidemic as well as antioxidant potentials. The antidyslipidemic activity of rohitukine can be correlated to its effect on enzymes involved in lipid metabolism.


Assuntos
Cromonas/uso terapêutico , Dislipidemias/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Piperidinas/uso terapêutico , Animais , Antioxidantes , Cromonas/farmacologia , Masculino , Piperidinas/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA