Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 941: 173571, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830415

RESUMO

Ice phenology is of great importance for the thermal structure of lakes and ponds and the biology of lake species. Under the current climate change conditions, ice-cover duration has been reduced by an advance in ice-off, and a delay in ice-on, and future projections foresee this trend as continuing. Here, we describe the current ice phenology of Pyrenean high mountain lakes and ponds, including ice-cover duration and ice-on and ice-off dates. We used mixed models to identify the variables that explained the observed patterns, extrapolated them across all water bodies in the mountain range, and related the seasonality of air and water temperatures with ice phenology using structural equation models. Ice phenology was obtained from the temperature series of 85 lakes and ponds for fourteen years, including 2001 to 2004 and 2009 to 2019. We discovered that high autumn precipitation was related to earlier ice-on dates, and that earlier ice-off dates were associated with higher following-summer water temperatures. We found a greater predictability of ice-off dates and ice-cover duration than ice-on dates. Altitude was the most important variable explaining the variation in ice phenology, followed by latitude, which was related to climatic differences among the northern and southern slopes of the mountain range. The lake area was significant for ice-on dates and ice-cover duration. The interannual variability in air temperature and radiation was remarkable for the ice-off date and ice-cover duration but not for the ice-on date. In contrast, wind speed was related to an earlier ice-off date and shorter ice-cover duration. All the measured lakes and ponds froze in winter during the studied period, a feature maintained in the extrapolation to the whole set of water bodies.

2.
PLoS One ; 17(12): e0277298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454960

RESUMO

Multiple Quaternary glacial refugia in the Iberian Peninsula, commonly known as "refugia within refugia", allowed diverging populations to come into contact and admix, potentially boosting substantial mito-nuclear discordances. In this study, we employ a comprehensive set of mitochondrial and nuclear markers to shed light onto the drivers of geographical differentiation in Iberian high mountain populations of the midwife toads Alytes obstetricans and A. almogavarii from the Pyrenees, Picos de Europa and Guadarrama Mountains. In the three analysed mountain regions, we detected evidence of extensive mito-nuclear discordances and/or admixture between taxa. Clustering analyses identified three major divergent lineages in the Pyrenees (corresponding to the eastern, central and central-western Pyrenees), which possibly recurrently expanded and admixed during the succession of glacial-interglacial periods that characterised the Late Pleistocene, and that currently follow a ring-shaped diversification pattern. On the other hand, populations from the Picos de Europa mountains (NW Iberian Peninsula) showed a mitochondrial affinity to central-western Pyrenean populations and a nuclear affinity to populations from the central Iberian Peninsula, suggesting a likely admixed origin for Picos de Europa populations. Finally, populations from the Guadarrama Mountain Range (central Iberian Peninsula) were depleted of genetic diversity, possibly as a consequence of a recent epidemic of chytridiomycosis. This work highlights the complex evolutionary history that shaped the current genetic composition of high mountain populations, and underscores the importance of using a multilocus approach to better infer the dynamics of population divergence.


Assuntos
Anuros , Resolução de Problemas , Animais , Filogeografia , Anuros/genética , Refúgio de Vida Selvagem , Evolução Biológica , Mitomicina
3.
PLoS One ; 16(8): e0254702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34343195

RESUMO

Thermal variables are crucial drivers of biological processes in lakes and ponds. In the current context of climate change, determining which factors better constrain their variation within lake districts become of paramount importance for understanding species distribution and their conservation. In this study, we describe the regional and short-term interannual variability in surface water temperature of high mountain lakes and ponds of the Pyrenees. And, we use mixed regression models to identify key environmental factors and to infer mean and maximum summer temperature, accumulated degree-days, diel temperature ranges and three-days' oscillation. The study is based on 59 lake-temperature series measured from 2001 to 2014. We found that altitude was the primary explicative factor for accumulated degree-days and mean and maximum temperature. In contrast, lake area showed the most relevant effect on the diel temperature range and temperature oscillations, although diel temperature range was also found to decline with altitude. Furthermore, the morphology of the catchment significantly affected accumulated degree-days and maximum and mean water temperatures. The statistical models developed here were applied to upscale spatially the current thermic conditions across the whole set of lakes and ponds of the Pyrenees.


Assuntos
Altitude , Ecossistema , Lagos , Temperatura , Modelos Teóricos , Lagoas , Análise de Regressão
4.
Mol Ecol ; 29(15): 2904-2921, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32563209

RESUMO

Historical factors (colonization scenarios, demographic oscillations) and contemporary processes (population connectivity, current population size) largely contribute to shaping species' present-day genetic diversity and structure. In this study, we use a combination of mitochondrial and nuclear DNA markers to understand the role of Quaternary climatic oscillations and present-day gene flow dynamics in determining the genetic diversity and structure of the newt Calotriton asper (Al. Dugès, 1852), endemic to the Pyrenees. Mitochondrial DNA did not show a clear phylogeographic pattern and presented low levels of variation. In contrast, microsatellites revealed five major genetic lineages with admixture patterns at their boundaries. Approximate Bayesian computation analyses and linear models indicated that the five lineages likely underwent separate evolutionary histories and can be tracked back to distinct glacial refugia. Lineage differentiation started around the Last Glacial Maximum at three focal areas (western, central and eastern Pyrenees) and extended through the end of the Last Glacial Period in the central Pyrenees, where it led to the formation of two more lineages. Our data revealed no evidence of recent dispersal between lineages, whereas borders likely represent zones of secondary contact following expansion from multiple refugia. Finally, we did not find genetic evidence of sex-biased dispersal. This work highlights the importance of integrating past evolutionary processes and present-day gene flow and dispersal dynamics, together with multilocus approaches, to gain insights into what shaped the current genetic attributes of amphibians living in montane habitats.


Assuntos
Variação Genética , Refúgio de Vida Selvagem , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Filogenia , Filogeografia , Salamandridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA