Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39194873

RESUMO

Trichoderma spp. are filamentous fungi generally observed in nature, which are widely marketed as biocontrol agents. The secondary metabolites produced have obtained special attention since they possess attractive chemical structures with a broad spectrum of biological activities. In Cuba, the species of Trichoderma have been commercially applied for the control of several phytopathogens to protect agricultural crops, but few studies have been carried out to detect and characterize the production of metabolites with biological activity. The strain Trichoderma harzianum LBAT-53 was subjected to an antifungal in vitro assay against Fusarium oxysporum f.sp. cubense by dual culture and volatile metabolite assays and fermented in PDB under constant agitation conditions. The ethyl acetate crude extract was obtained by liquid-liquid extraction. The fungal extract was investigated for the composition of secondary metabolites through chemical screening and ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in negative ionization mode. As a result, LBAT-53 showed antagonistic activity in vitro (Class 2) against the pathogen evaluated in direct confrontation (76.9% of inhibition in 10 days) and by volatile metabolites (<40% in 7 days). Furthermore, seven low-molecular-weight phenolic compounds, including chrysophanol, phomarin, endocrocin, and trichophenol A, among others, were identified using UHPLC-ESI-MS/MS. This study is the first work on the characterization of secondary metabolites produced by the commercially applied strain LBAT-53, which is a promising source of bioactive compounds. These results provide a better understanding of the metabolism of this fungus, which is widely used in Cuba as biopesticides in agriculture pest control.

2.
Materials (Basel) ; 15(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888365

RESUMO

The present study shows porous activated carbon obtained from Chenopodium quinoa Willd and Quillaja saponaria and their use as potential adsorbents to remove three types of dyes from aqueous solutions. The adsorption results were compared with commercial charcoal to check their efficiency. All porous carbon materials were activated using carbon dioxide and steam and fully characterized. Moreover, the steam-activated samples exhibited a high total pore volume with a BET surface area of around 800 m2 g−1. Batch adsorption experiments showed that commercial charcoal is the charcoal that offered the best adsorption efficiency for tartrazine and sunset yellow FCF. However, in the case of crystal violet, all activated carbons obtained from Chenopodium quinoa Willd and Quillaja saponaria showed the best captures, outperforming commercial charcoal. Molecular dockings of the dyes on the commercial charcoal surface were performed using AutoDock Vina. The kinetic results of the three isotherm's models for the present data follow the order: Langmuir~Freundlich > Temkin.

3.
Antioxidants (Basel) ; 8(10)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31601036

RESUMO

We investigated the potential of two oil extracts from seeds of Colliguaya integerrima (CIO) and Cynara cardunculus (CO) to use as nutritionally edible oils. For this purpose, oil quality was accessed by determining the fatty acid composition, peroxide value, acid value, iodine value, saponification number, phenolic contents, and oxidative stability during thermally induced oxidation of CIO and CO oils and compared to those of extra-virgin olive oil (EVOO). The chemical composition results demonstrated that both oils could be nutritional sources of essential unsaturated fatty acids. Moreover, according to the gravimetric analysis, the main decomposition step occurred in the temperature range of 200-420 °C, showing a similar thermal behavior of EVOO oil. However, CO and EVOO oils showed a higher phenolic content at degradation onset temperature (T0) in contrast with CIO oil. The antioxidant activity of the different studied oils showed a direct correlation with the phenol contents, up to temperatures around 180 °C, where the percentage of free radical scavenging assay for EVOO was higher than CO in contrast with the TPC values. Finally, we analyzed the minor components before and after heating CIO and CO at 180 °C by gas chromatography-mass spectrometry (GC-MS) using library search programs.

4.
Materials (Basel) ; 11(11)2018 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30423899

RESUMO

In this study, we investigated the potential of two non-edible oil extracts from seeds of Colliguaja integerrima (CIO) and Colliguaja salicifolia (CSO) to use as a renewable source for polyols and, eventually, polyurethane foams or biodiesel. For this purpose, two novel polyols from the aforementioned oils were obtained in a one-single step reaction using a mixture of hydrogen peroxide and acetic acid. The polyol derivatives obtained from the two studied oils were characterized by spectral (FTIR, ¹H NMR, and 13C NMR), physicochemical (e.g., chromatographic analysis, acid value, oxidizability values, iodine value, peroxide value, saponification number, kinematic viscosity, density, theorical molecular weight, hydroxyl number, and hydroxyl functionality) and thermal (TGA) analyses according to standard methods. Physicochemical results revealed that all parameters, with the exception of the iodine value, were higher for bio-polyols (CSP and CIP) compared to the starting oils. The NMR, TGA, and FTIR analyses demonstrated the formation of polyols. Finally, the OH functionality values for CIP and CSP were 4.50 and 5.00, respectively. This result indicated the possible used of CIP and CSP as a raw material for the preparation of polyurethane rigid foams.

5.
Polymers (Basel) ; 10(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30966660

RESUMO

The free-radical graft polymerization of acryloxyethyl-trimethylammonium chloride onto commercial silica particles was studied experimentally for extraction of arsenic ions from water. Two steps were used to graft acryloxyethyl-trimethylammonium chloride (Q) onto the surface of nanosilica: anchoring vinyltrimethoxysilane (VTMSO) onto the surface of silica to modify it with double bonds and then grafting Q onto the surface of silica with potassium persulfate as an initiator. The products were characterized by Fourier-transform infrared (FT-IR), the thermogravimetric analysis (TGA), scanning electron microscopy (SEM), 13C, 29Si nuclear magnetic resonance (NMR), and X-ray powder diffraction (XRD). The results showed that it is easy to graft Q onto the surface of silica under radical polimerization. The morphology analysis of silica and modified silica indicated that the silica decreased the size scale after modification. Q/VTMSO-SiO2 was tested for its ability to remove arsenic from drinking water. The results show that the new silica hybrid particles efficiently remove all arsenate ions. In addition, Q/VTMSO-SiO2 showed better sorption capacities for other metal ions (such as copper, zinc, chromium, uranium, vanadium, and lead) than a commercial water filter.

6.
Braz. arch. biol. technol ; 58(2): 244-253, Mar-Apr/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-744308

RESUMO

The aim of this work was to study a fast, new, sensitive, and simple method for the chemotaxonomic classification of Chilean lichens (Teloschistes chrysophthalmus, Ramalina farinacea, Usnea pusilla, Ramalina chilensis and Stereocaulon ramulosum) using MALDI-TOF-MS and UPLC-ESI(-)-MS data. Lichens soluble proteins fingerprints were acquired by MALDI-TOF-MS and they were analyzed by chemometric (PCA). Lichens organic extracts fingerprints were obtained by UPLC-ESI(-)-MS. MALDI-TOF-MS associated with chemometric analysis was used to detect new m/z patterns of soluble proteins that were compared with Protein Data Bank of UnitPro. These data also permitted the satisfactory distinction among the families and species. UPLC-ESI(-)-MS fingerprints analyses of the organic extracts showed the presence of five major lichen compounds (atranorin, parietin, teloschistin, ramalinolic and usnic acids). In contrast to other techniques, MALDI-TOF-MS associated with chemometric analysis and UPLC-ESI(-)-MS provided a new, fast and sensitive method for chemotaxonomic characterization of lichens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA