Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172696

RESUMO

The synchronization of the electrical and mechanical coupling assures the physiological pump function of the heart, but life-threatening pathologies may jeopardize this equilibrium. Recently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a model for personalized investigation because they can recapitulate human diseased traits, such as compromised electrical capacity or mechanical circuit disruption. This research avails the model of hiPSC-CMs and showcases innovative techniques to study the electrical and mechanical properties as well as their modulation due to inherited cardiomyopathies. In this work, hiPSC-CMs carrying either Brugada syndrome (BRU) or dilated cardiomyopathy (DCM), were organized in a bilayer configuration to first validate the experimental methods and second mimic the physiological environment. High-density CMOS-based microelectrode arrays (HD-MEA) have been employed to study the electrical activity. Furthermore, mechanical function was investigated via quantitative video-based evaluation, upon stimulation with a ß-adrenergic agonist. This study introduces two experimental methods. First, high-throughput mechanical measurements in the hiPSC-CM layers (xy-inspection) are obtained using both a recently developed optical tracker (OPT) and confocal reference-free traction force microscopy (cTFM) aimed to quantify cardiac kinematics. Second, atomic force microscopy (AFM) with FluidFM probes, combined with the xy-inspection methods, supplemented a three-dimensional understanding of cell-cell mechanical coupling (xyz-inspection). This particular combination represents a multi-technique approach to detecting electrical and mechanical latency among the cell layers, examining differences and possible implications following inherited cardiomyopathies. It can not only detect disease characteristics in the proposed in vitro model but also quantitatively assess its response to drugs, thereby demonstrating its feasibility as a scalable tool for clinical and pharmacological studies.

6.
Environ Toxicol Pharmacol ; 109: 104477, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810713

RESUMO

Biochar is currently garnering interest as an alternative to commercial fertilizer and as a tool to counteract global warming. However, its use is increasingly drawing attention, particularly concerning the fine dust that can be developed during its manufacture, transport, and use. This work aimed to assess the toxicity of fine particulate Biochar (

Assuntos
Carvão Vegetal , Poeira , Animais , Poeira/análise , Masculino , Humanos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Poluentes Atmosféricos/toxicidade , Ratos , Proliferação de Células/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Interleucina-8/metabolismo , Material Particulado/toxicidade
7.
Sci Rep ; 14(1): 1782, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245558

RESUMO

The heart coordinates its functional parameters for optimal beat-to-beat mechanical activity. Reliable detection and quantification of these parameters still represent a hot topic in cardiovascular research. Nowadays, computer vision allows the development of open-source algorithms to measure cellular kinematics. However, the analysis software can vary based on analyzed specimens. In this study, we compared different software performances in in-silico model, in-vitro mouse adult ventricular cardiomyocytes and cardioids. We acquired in-vitro high-resolution videos during suprathreshold stimulation at 0.5-1-2 Hz, adapting the protocol for the cardioids. Moreover, we exposed the samples to inotropic and depolarizing substances. We analyzed in-silico and in-vitro videos by (i) MUSCLEMOTION, the gold standard among open-source software; (ii) CONTRACTIONWAVE, a recently developed tracking software; and (iii) ViKiE, an in-house customized video kinematic evaluation software. We enriched the study with three machine-learning algorithms to test the robustness of the motion-tracking approaches. Our results revealed that all software produced comparable estimations of cardiac mechanical parameters. For instance, in cardioids, beat duration measurements at 0.5 Hz were 1053.58 ms (MUSCLEMOTION), 1043.59 ms (CONTRACTIONWAVE), and 937.11 ms (ViKiE). ViKiE exhibited higher sensitivity in exposed samples due to its localized kinematic analysis, while MUSCLEMOTION and CONTRACTIONWAVE offered temporal correlation, combining global assessment with time-efficient analysis. Finally, machine learning reveals greater accuracy when trained with MUSCLEMOTION dataset in comparison with the other software (accuracy > 83%). In conclusion, our findings provide valuable insights for the accurate selection and integration of software tools into the kinematic analysis pipeline, tailored to the experimental protocol.


Assuntos
Algoritmos , Software , Camundongos , Animais , Fenômenos Biomecânicos , Miócitos Cardíacos/fisiologia , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA