RESUMO
OBJECTIVE. The purpose of this article is to evaluate restriction spectrum imaging (RSI) in men undergoing MRI-ultrasound fusion biopsy for suspected prostate cancer (PCa) and to compare the performance of RSI with that of conventional DWI. MATERIALS AND METHODS. One hundred ninety-eight biopsy-naïve men enrolled in a concurrent prospective clinical trial evaluating MRI-targeted prostate biopsy underwent multiparametric MRI with RSI. Clinical and imaging features were compared between men with and without clinically significant (CS) PCa (MRI-ultrasound fusion biopsy Gleason score ≥ 3 + 4). RSI z score and apparent diffusion coefficient (ADC) were correlated, and their diagnostic performances were compared. RESULTS. CS PCa was detected in 109 of 198 men (55%). Using predefined thresholds of ADC less than or equal to 1000 µm2/s and RSI z score greater than or equal to 3, sensitivity and specificity for CS PCa were 86% and 38%, respectively, for ADC and 61% and 70%, respectively, for RSI. In the transition zone (n = 69), the sensitivity and specificity were 94% and 17%, respectively, for ADC and 59% and 69%, respectively, for RSI. Among lesions with CS PCa, RSI z score and ADC were significantly inversely correlated in the peripheral zone (ρ = -0.4852; p < 0.01) but not the transition zone (ρ = -0.2412; p = 0.17). Overall diagnostic accuracies of RSI and DWI were 0.70 and 0.68, respectively (p = 0.74). CONCLUSION. RSI and DWI achieved equivalent diagnostic performance for PCa detection in a large population of men undergoing first-time prostate biopsy for suspected PCa, but RSI had superior specificity for transition zone lesions.
Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Biópsia Guiada por Imagem , Imagem Multimodal , Neoplasias da Próstata/patologia , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , UltrassonografiaRESUMO
BACKGROUND: Hemiablation is a less morbid treatment alternative for appropriately selected patients with unilateral prostate cancer (PCa). However, to the authors' knowledge, traditional diagnostic techniques inadequately identify appropriate candidates. In the current study, the authors quantified the accuracy for identifying hemiablation candidates using contemporary diagnostic techniques, including multiparametric magnetic resonance imaging (mpMRI) and MRI-fusion with complete systematic template biopsy. METHODS: A retrospective analysis of patients undergoing MRI and MRI-fusion prostate biopsy, including full systematic template biopsy, prior to radical prostatectomy in a single tertiary academic institution between June 2010 and February 2018 was performed. Hemiablation candidates had unilateral intermediate-risk PCa (Gleason score [GS] of 3+4 or 4+3, clinical T classification ≤T2, and prostate-specific antigen level <20 ng/dL) on MRI-fusion biopsy and 2) no contralateral highly or very highly suspicious Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) MRI lesions. Hemiablation candidates were inappropriately selected if pathologists identified contralateral GS ≥3+4 or high-risk ipsilateral PCa on prostatectomy. The authors tested a range of hemiablation inclusion criteria and performed multivariable analysis of preoperative predictors of undetected contralateral disease. RESULTS: Of 665 patients, 92 met primary hemiablation criteria. Of these 92 patients, 44 (48%) were incorrectly identified due to ipsilateral GS ≥3+4 tumors crossing the midline (21 patients), undetected distinct contralateral GS ≥3+4 tumors (20 patients), and/or ipsilateral high-risk PCa (3 patients) on prostatectomy. The rate of undetected contralateral disease ranged from 41% to 48% depending on inclusion criteria. On multivariable analysis, men with anterior index tumors were found to be 2.4 times more likely to harbor undetected contralateral GS ≥3+4 PCa compared with men with posterior lesions (P < .05). CONCLUSIONS: Clinicians and patients must weigh the risk of inadequate oncologic treatment against the functional benefits of hemiablation. Further investigation into methods for improving patient selection for hemiablation is necessary.
Assuntos
Seleção de Pacientes , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Humanos , Biópsia Guiada por Imagem , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Ultrassom Focalizado Transretal de Alta IntensidadeRESUMO
BACKGROUND: Multiparametric magnetic resonance imaging (mpMRI) undoubtedly affects the diagnosis and treatment of localized prostate cancer (CaP). However, clinicians need a better understanding of its accuracy and limitations in detecting individual CaP foci to optimize management. OBJECTIVE: To determine the per-lesion detection rate for CaP foci by mpMRI and identify predictors of tumor detection. DESIGN, SETTING, AND PARTICIPANTS: We carried out a retrospective analysis of a prospectively managed database correlating lesion-specific results from mpMRI co-registered with whole-mount pathology (WMP) prostatectomy specimens from June 2010 to February 2018. Participants include 588 consecutive patients with biopsy-proven CaP undergoing 3-T mpMRI before radical prostatectomy at a single tertiary institution. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We measured mpMRI sensitivity in detecting individual CaP and clinically significant (any Gleason score ≥7) CaP foci and predictors of tumor detection using multivariate analysis. RESULTS AND LIMITATIONS: The final analysis included 1213 pathologically confirmed tumor foci in 588 patients with primarily intermediate- (75%) or high-risk (12%) CaP. mpMRI detected 45% of all lesions (95% confidence interval [CI] 42-47%), including 65% of clinically significant lesions (95% CI 61-69%) and nearly 80% of high-grade tumors. Some 74% and 31% of missed solitary and multifocal tumors, respectively, were clinically significant. The majority of missed lesions were small (61.1% ≤1cm); 28.3% were between 1 and 2cm, and 10.4% were >2cm. mpMRI missed at least one clinically significant focus in 34% of patients overall, and in 45% of men with multifocal lesions. On multivariate analysis, smaller, low-grade, multifocal, nonindex tumors with lower prostate-specific antigen density were more likely to be missed. Limitations include selection bias in a prostatectomy cohort, lack of specificity data, an imperfect co-registration process, and uncertain clinical significance for undetected lesions. CONCLUSIONS: mpMRI detects less than half of all and less than two-thirds of clinically significant CaP foci. The moderate per-lesion sensitivity and significant proportion of men with undetected tumor foci demonstrate the current limitations of mpMRI. PATIENT SUMMARY: Magnetic resonance imaging of the prostate before surgical removal for prostate cancer finds less than half of all individual prostate cancer tumors. Large, solitary, aggressive tumors are more likely to be visualized on imaging.