Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(8): 4575-4587, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38364869

RESUMO

Group II introns in plant organelles have lost splicing autonomy and require the assistance of nuclear-encoded trans-factors whose roles remain to be elucidated. These factors can be mono- or poly-specific with respect to the number of introns whose splicing they facilitate. Poly-acting splicing factors are often essential and their genetic identification may benefit from the use of conditional mutations. Temperature-sensitive (TS) mutations in the ROOT PRIMORDIUM DEFECTIVE 1 (RPD1) gene were initially selected for their inhibitory effect on root formation in Arabidopsis. Further analysis revealed that RPD1 encodes a mitochondria-targeted RNA-binding protein family member, suggesting a role in mitochondrial gene expression and making its role in root formation enigmatic. We analysed the function of RPD1 and found that it is required for the removal of 9 mitochondrial group II introns and that the identified TS mutations affect the splicing function of RPD1. These results support that the inhibition of adventitious root formation at non-permissive temperature results from a reduction in RPD1 activity and thus mitochondrial activity. We further show that RPD1 physically associates in vivo with the introns whose splicing it facilitates. Preliminary mapping indicates that RPD1 may not bind to the same regions within all of its intron targets, suggesting potential variability in its influence on splicing activation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Íntrons , Mitocôndrias , Mutação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Temperatura
2.
Science ; 381(6661): eadg0995, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37651534

RESUMO

Plant mitochondria represent the largest group of respiring organelles on the planet. Plant mitochondrial messenger RNAs (mRNAs) lack Shine-Dalgarno-like ribosome-binding sites, so it is unknown how plant mitoribosomes recognize mRNA. We show that "mitochondrial translation factors" mTRAN1 and mTRAN2 are land plant-specific proteins, required for normal mitochondrial respiration chain biogenesis. Our studies suggest that mTRANs are noncanonical pentatricopeptide repeat (PPR)-like RNA binding proteins of the mitoribosomal "small" subunit. We identified conserved Adenosine (A)/Uridine (U)-rich motifs in the 5' regions of plant mitochondrial mRNAs. mTRAN1 binds this motif, suggesting that it is a mitoribosome homing factor to identify mRNAs. We demonstrate that mTRANs are likely required for translation of all plant mitochondrial mRNAs. Plant mitochondrial translation initiation thus appears to use a protein-mRNA interaction that is divergent from bacteria or mammalian mitochondria.


Assuntos
Mitocôndrias , Iniciação Traducional da Cadeia Peptídica , Proteínas de Plantas , RNA Mensageiro , Animais , Sítios de Ligação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sequência Conservada
3.
Nucleic Acids Res ; 51(14): 7619-7630, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37293952

RESUMO

Initiation and termination of plant mitochondrial transcription are poorly controlled steps. Precursor transcripts are thus often longer than necessary, and 3'-end processing as well as control of RNA stability are essential to produce mature mRNAs in plant mitochondria. Plant mitochondrial 3' ends are determined by 3'-to-5' exonucleolytic trimming until the progression of mitochondrial exonucleases along transcripts is stopped by stable RNA structures or RNA binding proteins. In this analysis, we investigated the function of the endonucleolytic mitochondrial stability factor 1 (EMS1) pentatricopeptide repeat (PPR) protein and showed that it is essential for the production and the stabilization of the mature form of the nad2 exons 1-2 precursor transcript, whose 3' end corresponds to the 5' half of the nad2 trans-intron 2. The accumulation of an extended rather than a truncated form of this transcript in ems1 mutant plants suggests that the role of EMS1 in 3' end formation is not strictly limited to blocking the passage of 3'-5' exonucleolytic activity, but that 3' end formation of the nad2 exons 1-2 transcript involves an EMS1-dependent endonucleolytic cleavage. This study demonstrates that the formation of the 3' end of mitochondrial transcripts may involve an interplay of endonucleolytic and exonucleolytic processing mediated by PPR proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo
4.
Sci Rep ; 12(1): 12492, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864185

RESUMO

Gene expression in plant mitochondria is mainly regulated by nuclear-encoded proteins on a post-transcriptional level. Pentatricopeptide repeat (PPR) proteins play a major role by participating in mRNA stability, splicing, RNA editing, and translation initiation. PPR proteins were also shown to be part of the mitochondrial ribosome (rPPR proteins), which may act as regulators of gene expression in plants. In this study, we focus on a mitochondrial-located P-type PPR protein-DWEORG1-from Arabidopsis thaliana. Its abundance in mitochondria is high, and it has a similar expression pattern as rPPR proteins. Mutant dweorg1 plants exhibit a slow-growth phenotype. Using ribosome profiling, a decrease in translation efficiency for cox2, rps4, rpl5, and ccmFN2 was observed in dweorg1 mutants, correlating with a reduced accumulation of the Cox2 protein in these plants. In addition, the mitochondrial rRNA levels are significantly reduced in dweorg1 compared with the wild type. DWEORG1 co-migrates with the ribosomal proteins Rps4 and Rpl16 in sucrose gradients, suggesting an association of DWEORG1 with the mitoribosome. Collectively, this data suggests that DWEORG1 encodes a novel rPPR protein that is needed for the translation of cox2, rps4, rpl5, and ccmFN2 and provides a stabilizing function for mitochondrial ribosomes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
5.
Plant Physiol ; 190(1): 669-681, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35751603

RESUMO

Gene expression in plant mitochondria is predominantly governed at the post-transcriptional level and relies mostly on nuclear-encoded proteins. However, the protein factors involved and the underlying molecular mechanisms are still not well understood. Here, we report on the function of the MITOCHONDRIAL STABILITY FACTOR 3 (MTSF3) protein, previously named EMBRYO DEFECTIVE 2794 (EMB2794), and show that it is essential for accumulation of the mitochondrial NADH dehydrogenase subunit 2 (nad2) transcript in Arabidopsis (Arabidopsis thaliana) but not for splicing of nad2 intron 2 as previously proposed. The MTSF3 gene encodes a pentatricopeptide repeat protein that localizes in the mitochondrion. An MTSF3 null mutation induces embryonic lethality, but viable mtsf3 mutant plants can be generated through partial complementation with the developmentally regulated ABSCISIC ACID INSENSITIVE3 promoter. Genetic analyses revealed growth retardation in rescued mtsf3 plants owing to the specific destabilization of mature nad2 mRNA and a nad2 precursor transcript bearing exons 3 to 5. Biochemical data demonstrate that MTSF3 protein specifically binds to the 3' terminus of nad2. Destabilization of nad2 mRNA induces a substantial decrease in complex I assembly and activity and overexpression of the alternative respiratory pathway. Our results support a role for MTSF3 protein in protecting two nad2 transcripts from degradation by mitochondrial exoribonucleases by binding to their 3' extremities.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo
7.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269810

RESUMO

Mitochondria play key roles in cellular energy metabolism in eukaryotes. Mitochondria of most organisms contain their own genome and specific transcription and translation machineries. The expression of angiosperm mtDNA involves extensive RNA-processing steps, such as RNA trimming, editing, and the splicing of numerous group II-type introns. Pentatricopeptide repeat (PPR) proteins are key players in plant organelle gene expression and RNA metabolism. In the present analysis, we reveal the function of the MITOCHONDRIAL SPLICING FACTOR 2 gene (MISF2, AT3G22670) and show that it encodes a mitochondria-localized PPR protein that is crucial for early embryo development in Arabidopsis. Molecular characterization of embryo-rescued misf2 plantlets indicates that the splicing of nad2 intron 1, and thus respiratory complex I biogenesis, are strongly compromised. Moreover, the molecular function seems conserved between MISF2 protein in Arabidopsis and its orthologous gene (EMP10) in maize, suggesting that the ancestor of MISF2/EMP10 was recruited to function in nad2 processing before the monocot-dicot divergence ~200 million years ago. These data provide new insights into the function of nuclear-encoded factors in mitochondrial gene expression and respiratory chain biogenesis during plant embryo development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis , Complexo I de Transporte de Elétrons/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Proteínas de Plantas/genética , RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34433671

RESUMO

The control of messenger RNA (mRNA) translation has been increasingly recognized as a key regulatory step for gene control, but clear examples in eukaryotes are still scarce. Nucleo-cytoplasmic male sterilities (CMS) represent ideal genetic models to dissect genetic interactions between the mitochondria and the nucleus in plants. This trait is determined by specific mitochondrial genes and is associated with a pollen sterility phenotype that can be suppressed by nuclear genes known as restorer-of-fertility (Rf). In this study, we focused on the Ogura CMS system in rapeseed and showed that reversion to male sterility by the PPR-B fertility restorer (also called Rfo) occurs through a specific translation inhibition of the mitochondria-encoded CMS-causing mRNA orf138 We also demonstrate that PPR-B binds within the coding sequence of orf138 and acts as a ribosome blocker to specifically impede translation elongation along the orf138 mRNA. Rfo is the first recognized fertility restorer shown to act this way. These observations will certainly facilitate the development of synthetic fertility restorers for CMS systems in which efficient natural Rfs are lacking.


Assuntos
Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal/métodos , Infertilidade das Plantas , Proteínas de Plantas/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Raphanus/fisiologia , Citoplasma/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo
9.
Mol Biol Evol ; 38(8): 3445-3458, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33878189

RESUMO

The high mutational load of mitochondrial genomes combined with their uniparental inheritance and high polyploidy favors the maintenance of deleterious mutations within populations. How cells compose and adapt to the accumulation of disadvantageous mitochondrial alleles remains unclear. Most harmful changes are likely corrected by purifying selection, however, the intimate collaboration between mitochondria- and nuclear-encoded gene products offers theoretical potential for compensatory adaptive changes. In plants, cytoplasmic male sterilities are known examples of nucleo-mitochondrial coadaptation situations in which nuclear-encoded restorer of fertility (Rf) genes evolve to counteract the effect of mitochondria-encoded cytoplasmic male sterility (CMS) genes and restore fertility. Most cloned Rfs belong to a small monophyletic group, comprising 26 pentatricopeptide repeat genes in Arabidopsis, called Rf-like (RFL). In this analysis, we explored the functional diversity of RFL genes in Arabidopsis and found that the RFL8 gene is not related to CMS suppression but essential for plant embryo development. In vitro-rescued rfl8 plantlets are deficient in the production of the mitochondrial heme-lyase complex. A complete ensemble of molecular and genetic analyses allowed us to demonstrate that the RFL8 gene has been selected to permit the translation of the mitochondrial ccmFN2 gene encoding a heme-lyase complex subunit which derives from the split of the ccmFN gene, specifically in Brassicaceae plants. This study represents thus a clear case of nuclear compensation to a lineage-specific mitochondrial genomic rearrangement in plants and demonstrates that RFL genes can be selected in response to other mitochondrial deviancies than CMS suppression.


Assuntos
Arabidopsis/genética , Genoma Mitocondrial , Seleção Genética , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grupo dos Citocromos c/metabolismo , Desenvolvimento Embrionário , Biossíntese de Proteínas , Splicing de RNA
10.
Proc Natl Acad Sci U S A ; 117(47): 29979-29987, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168708

RESUMO

Production and expression of RNA requires the action of multiple RNA-binding proteins (RBPs). New RBPs are most often created by novel combinations of dedicated RNA-binding modules. However, recruiting existing genes to create new RBPs is also an important evolutionary strategy. In this report, we analyzed the eight-member uL18 ribosomal protein family in Arabidopsis uL18 proteins share a short structurally conserved domain that binds the 5S ribosomal RNA (rRNA) and allows its incorporation into ribosomes. Our results indicate that Arabidopsis uL18-Like proteins are targeted to either mitochondria or chloroplasts. While two members of the family are found in organelle ribosomes, we show here that two uL18-type proteins function as factors necessary for the splicing of certain mitochondrial and plastid group II introns. These two proteins do not cosediment with mitochondrial or plastid ribosomes but instead associate with the introns whose splicing they promote. Our study thus reveals that the RNA-binding capacity of uL18 ribosomal proteins has been repurposed to create factors that facilitate the splicing of organellar introns.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Splicing de RNA , Proteínas Ribossômicas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Íntrons/genética , Mutação , Plantas Geneticamente Modificadas , RNA Ribossômico 5S/metabolismo , Proteínas Ribossômicas/genética
11.
Plants (Basel) ; 9(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369924

RESUMO

Mitochondria and chloroplasts are important actors in the plant nutritional efficiency. So, it could be expected that a disruption of the coadaptation between nuclear and organellar genomes impact plant response to nutrient stresses. We addressed this issue using two Arabidopsis accessions, namely Ct1 and Jea, and their reciprocal cytolines possessing the nuclear genome from one parent and the organellar genomes of the other one. We measured gene expression, and quantified proteins and metabolites under N starvation and non-limiting conditions. We observed a typical response to N starvation at the phenotype and molecular levels. The phenotypical response to N starvation was similar in the cytolines compared to the parents. However, we observed an effect of the disruption of genomic coadaptation at the molecular levels, distinct from the previously described responses to organellar stresses. Strikingly, genes differentially expressed in cytolines compared to parents were mainly repressed in the cytolines. These genes encoded more mitochondrial and nuclear proteins than randomly expected, while N starvation responsive ones were enriched in genes for chloroplast and nuclear proteins. In cytolines, the non-coadapted cytonuclear genomic combination tends to modulate the response to N starvation observed in the parental lines on various biological processes.

12.
Plant J ; 101(5): 1040-1056, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31630458

RESUMO

The central dogma in biology defines the flow of genetic information from DNA to RNA to protein. Accordingly, RNA molecules generally accurately follow the sequences of the genes from which they are transcribed. This rule is transgressed by RNA editing, which creates RNA products that differ from their DNA templates. Analyses of the RNA landscapes of terrestrial plants have indicated that RNA editing (in the form of C-U base transitions) is highly prevalent within organelles (that is, mitochondria and chloroplasts). Numerous C→U conversions (and in some plants also U→C) alter the coding sequences of many of the organellar transcripts and can also produce translatable mRNAs by creating AUG start sites or eliminating premature stop codons, or affect the RNA structure, influence splicing and alter the stability of RNAs. RNA-binding proteins are at the heart of post-transcriptional RNA expression. The C-to-U RNA editing process in plant mitochondria involves numerous nuclear-encoded factors, many of which have been identified as pentatricopeptide repeat (PPR) proteins that target editing sites in a sequence-specific manner. In this review we report on major discoveries on RNA editing in plant organelles, since it was first documented 30 years ago.


Assuntos
Plantas/genética , Edição de RNA , Núcleo Celular/genética , Cloroplastos/genética , Mitocôndrias/genética , Plantas/metabolismo , RNA de Plantas/genética , Proteínas de Ligação a RNA/genética
13.
Nat Plants ; 5(1): 106-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626926

RESUMO

Mitochondria are responsible for energy production through aerobic respiration, and represent the powerhouse of eukaryotic cells. Their metabolism and gene expression processes combine bacterial-like features and traits that evolved in eukaryotes. Among mitochondrial gene expression processes, translation remains the most elusive. In plants, while numerous pentatricopeptide repeat (PPR) proteins are involved in all steps of gene expression, their function in mitochondrial translation remains unclear. Here we present the biochemical characterization of Arabidopsis mitochondrial ribosomes and identify their protein subunit composition. Complementary biochemical approaches identified 19 plant-specific mitoribosome proteins, of which ten are PPR proteins. The knockout mutations of ribosomal PPR (rPPR) genes result in distinct macroscopic phenotypes, including lethality and severe growth delay. The molecular analysis of rppr1 mutants using ribosome profiling, as well as the analysis of mitochondrial protein levels, demonstrate rPPR1 to be a generic translation factor that is a novel function for PPR proteins. Finally, single-particle cryo-electron microscopy (cryo-EM) reveals the unique structural architecture of Arabidopsis mitoribosomes, characterized by a very large small ribosomal subunit, larger than the large subunit, bearing an additional RNA domain grafted onto the head. Overall, our results show that Arabidopsis mitoribosomes are substantially divergent from bacterial and other eukaryote mitoribosomes, in terms of both structure and protein content.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Microscopia Crioeletrônica , Técnicas de Inativação de Genes , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Células Vegetais , Proteômica/métodos , RNA de Plantas , RNA Ribossômico/química
14.
J Exp Bot ; 69(21): 5131-5140, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30053059

RESUMO

Group II introns are common features of most angiosperm mitochondrial genomes. Intron splicing is thus essential for the expression of mitochondrial genes and is facilitated by numerous nuclear-encoded proteins. However, the molecular mechanism and the protein cofactors involved in this complex process have not been fully elucidated. In this study, we characterized three new pentatricopeptide repeat (PPR) genes, called MISF26, MISF68, and MISF74, of Arabidopsis and showed they all function in group II intron splicing and plant development. The three PPR genes encode P-type PPR proteins that localize in the mitochondrion. Transcript analysis revealed that the splicing of a single intron is altered in misf26 mutants, while several mitochondrial intron splicing defects were detected in misf68 and misf74 mutants. To our knowledge, MISF68 and MISF74 are the first two PPR proteins implicated in the splicing of more than one intron in plant mitochondria, suggesting that they may facilitate splicing differently from other previously identified PPR splicing factors. The splicing defects in the misf mutants induce a significant decrease in complex I assembly and activity, and an overexpression of mRNAs of the alternative respiratory pathway. These results therefore reveal that nuclear encoded proteins MISF26, MISF68, and MISF74 are involved in splicing of a cohort of mitochondrial group II introns and thereby required for complex I biogenesis.


Assuntos
Arabidopsis/genética , Íntrons/genética , Mitocôndrias/metabolismo , Splicing de RNA/genética , Arabidopsis/metabolismo
15.
Nucleic Acids Res ; 46(12): 6218-6228, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29873797

RESUMO

Messenger RNA translation is a complex process that is still poorly understood in eukaryotic organelles like mitochondria. Growing evidence indicates though that mitochondrial translation differs from its bacterial counterpart in many key aspects. In this analysis, we have used ribosome profiling technology to generate a genome-wide snapshot view of mitochondrial translation in Arabidopsis. We show that, unlike in humans, most Arabidopsis mitochondrial ribosome footprints measure 27 and 28 bases. We also reveal that respiratory subunits encoding mRNAs show much higher ribosome association than other mitochondrial mRNAs, implying that they are translated at higher levels. Homogenous ribosome densities were generally detected within each respiratory complex except for complex V, where higher ribosome coverage corroborated with higher requirements for specific subunits. In complex I respiratory mutants, a reorganization of mitochondrial mRNAs ribosome association was detected involving increased ribosome densities for certain ribosomal protein encoding transcripts and a reduction in translation of a few complex V mRNAs. Taken together, our observations reveal that plant mitochondrial translation is a dynamic process and that translational control is important for gene expression in plant mitochondria. This study paves the way for future advances in the understanding translation in higher plant mitochondria.


Assuntos
Arabidopsis/genética , Mitocôndrias/genética , Biossíntese de Proteínas , Complexo I de Transporte de Elétrons/genética , Genes Mitocondriais , Mutação , Edição de RNA , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
16.
Nucleic Acids Res ; 45(10): 6119-6134, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334831

RESUMO

RNA expression in plant mitochondria implies a large number of post-transcriptional events in which transcript processing and stabilization are essential. In this study, we analyzed the function of the Arabidopsis mitochondrial stability factor 2 gene (MTSF2) and show that the encoded pentatricopeptide repeat protein is essential for the accumulation of stable nad1 mRNA. The production of mature nad1 requires the assembly of three independent RNA precursors via two trans-splicing reactions. Genetic analyses revealed that the lack of nad1 in mtsf2 mutants results from the specific destabilization of the nad1 exons 2-3 precursor transcript. We further demonstrated that MTSF2 binds to its 3΄ extremity with high affinity, suggesting a protective action by blocking exoribonuclease progression. By defining the 3΄ end of nad1 exons 2-3 precursor, MTSF2 concomitantly determines the 3΄ extremity of the first half of the trans-intron found at the end of the transcript. Therefore, binding of the MTSF2 protein to nad1 exons 2-3 precursor evolved both to stabilize the transcript and to define a 3΄ extremity compatible with the trans-splicing reaction needed to reconstitute mature nad1. We thus reveal that the range of transcripts stabilized by association with protective protein on their 3΄ end concerns also mitochondrial precursor transcripts.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , Precursores de RNA/metabolismo , RNA de Plantas/metabolismo , Proteína EWS de Ligação a RNA/fisiologia , RNA/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Sequência de Bases , Sítios de Ligação , Sistemas CRISPR-Cas , Complexo I de Transporte de Elétrons/metabolismo , Éxons , Íntrons/genética , Mitocôndrias/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Splicing de RNA , Estabilidade de RNA , RNA Mitocondrial , Proteína EWS de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
17.
Front Plant Sci ; 7: 1816, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999582

RESUMO

Cytoplasmic male sterility (CMS) is a widespread phenotype in plants, which present a defect in the production of functional pollen. The male sterilizing factors usually consist of unusual genes or open reading frames encoded by the mitochondrial genome. CMS can be suppressed by specific nuclear genes called restorers of fertility (Rfs). In the majority of cases, Rf genes produce proteins that act directly on the CMS conferring mitochondrial transcripts by binding them specifically and promoting processing events. In this review, we explore the wide array of mechanisms guiding fertility restoration. PPR proteins represent the most frequent protein class among identified Rfs and they exhibit ideal characteristics to evolve into restorer of fertility when the mechanism of restoration implies a post-transcriptional action. Here, we review the literature that highlights those characteristics and help explain why PPR proteins are ideal for the roles they play as restorers of fertility.

18.
Plant Physiol ; 170(1): 354-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537562

RESUMO

Mitochondrial translation involves a complex interplay of ancient bacteria-like features and host-derived functionalities. Although the basic components of the mitochondrial translation apparatus have been recognized, very few protein factors aiding in recruiting ribosomes on mitochondria-encoded messenger RNA (mRNAs) have been identified in higher plants. In this study, we describe the identification of the Arabidopsis (Arabidopsis thaliana) MITOCHONDRIAL TRANSLATION FACTOR1 (MTL1) protein, a new member of the Pentatricopeptide Repeat family, and show that it is essential for the translation of the mitochondrial NADH dehydrogenase subunit7 (nad7) mRNA. We demonstrate that mtl1 mutant plants fail to accumulate the Nad7 protein, even though the nad7 mature mRNA is produced and bears the same 5' and 3' extremities as in wild-type plants. We next observed that polysome association of nad7 mature mRNA is specifically disrupted in mtl1 mutants, indicating that the absence of Nad7 results from a lack of translation of nad7 mRNA. These findings illustrate that mitochondrial translation requires the intervention of gene-specific nucleus-encoded PPR trans-factors and that their action does not necessarily involve the 5' processing of their target mRNA, as observed previously. Interestingly, a partial decrease in nad7 intron 2 splicing was also detected in mtl1 mutants, suggesting that MTL1 is also involved in group II intron splicing. However, this second function appears to be less essential for nad7 expression than its role in translation. MTL1 will be instrumental to understand the multifunctionality of PPR proteins and the mechanisms governing mRNA translation and intron splicing in plant mitochondria.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADH Desidrogenase/genética , Splicing de RNA , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Íntrons , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , NADH Desidrogenase/metabolismo , Plantas Geneticamente Modificadas , Polirribossomos/genética , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mitocondrial
19.
Mol Plant ; 8(4): 644-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25708384

RESUMO

The hot ABA-deficiency suppressor2 (has2) mutation increases drought tolerance and the ABA sensitivity of stomata closure and seed germination. Here we report that the HAS2 locus encodes the mitochondrial editing factor11 (MEF11), also known as lovastatin insensitive1. has2/mef11 mutants exhibited phenotypes very similar to the ABA-hypersensitive mutant, hai1-1 pp2ca-1 hab1-1 abi1-2, which is impaired in four genes encoding type 2C protein phosphatases (PP2C) that act as upstream negative regulators of the ABA signaling cascade. Like pp2c, mef11 plants were more resistant to progressive water stress and seed germination was more sensitive to paclobutrazol (a gibberellin biosynthesis inhibitor) as well as mannitol and NaCl, compared with the wild-type plants. Phenotypic alterations in mef11 were associated with the lack of editing of transcripts for the mitochondrial cytochrome c maturation FN2 (ccmFN2) gene, which encodes a cytochrome c-heme lyase subunit involved in cytochrome c biogenesis. Although the abundance of electron transfer chain complexes was not affected, their dysfunction could be deduced from increased respiration and altered production of hydrogen peroxide and nitric oxide in mef11 seeds. As minor defects in mitochondrial respiration affect ABA signaling, this suggests an essential role for ABA in mitochondrial retrograde regulation.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Edição de RNA/fisiologia , RNA/fisiologia , Transdução de Sinais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA/genética , Edição de RNA/genética , RNA Mitocondrial , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética
20.
BMC Plant Biol ; 14: 313, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403785

RESUMO

BACKGROUND: Nuclear restorers of cytoplasmic male fertility (CMS) act to suppress the male sterile phenotype by down-regulating the expression of novel CMS-specifying mitochondrial genes. One such restorer gene is Rfo, which restores fertility to the radish Ogura or ogu CMS. Rfo, like most characterized restorers, encodes a pentatricopeptide repeat (PPR) protein, a family of eukaryotic proteins characterized by tandem repeats of a 35 amino acid motif. While over 400 PPR genes are found in characterized plant genomes and the importance of this gene family in organelle gene expression is widely recognized, few detailed in vivo assessments of primary structure-function relationships in this protein family have been conducted. RESULTS: In contrast to earlier studies, which identified 16 or 17 PPR domains in the Rfo protein, we now find, using a more recently developed predictive tool, that Rfo has 18 repeat domains with the additional domain N-terminal to the others. Comparison of transcript sequences from pooled rfo/rfo plants with pooled Rfo/Rfo plants of a mapping population led to the identification of a non-restoring rfo allele with a 12 bp deletion in the fourth domain. Introduction into ogu CMS plants of a genetic construct in which this deletion had been introduced into Rfo led to a partial loss in the capacity to produce viable pollen, as assessed by vital staining, pollen germination and the capacity for seed production following pollination of CMS plants. The degree of viable pollen production among different transgenic plants roughly correlated with the copy number of the introduced gene and with the reduction of the levels of the ORF138 CMS-associated protein. All other constructs tested, including one in which only the C-terminal PPR repeat was deleted and another in which this repeat was replaced by the corresponding domain of the related, non-restoring gene, PPR-A, failed to result in any measure of fertility restoration. CONCLUSIONS: The identification of the additional PPR domain in Rfo indicates that the protein, apart from its N-terminal mitochondrial targeting presequence, consists almost entirely of PPR repeats. The newly identified rfo allele carries the same 4 amino acid deletion as that found in the neighboring, related, non-restoring PPR gene, PPR-A. Introduction of this four amino acid deletion into a central domain the Rfo protein, however, only partially reduces its restoration capacity, even though this alteration might be expected to alter the spacing between the adjoining repeats. All other tested alterations, generated by deleting specific PPR repeats or exchanging repeats with corresponding domains of PPR-A, led to a complete loss of restorer function. Overall we demonstrate that introduction of targeted alterations of Rfo into ogu CMS plants provides a sensitive in vivo readout for analysis of the relationship between primary structure and biological function in this important family of plant proteins.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raphanus/genética , Deleção de Sequência , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Raphanus/metabolismo , Reprodução , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA