RESUMO
Autism Spectrum Disorder (ASD) is a progressive neurodevelopmental disorder mainly characterized by deficits in social communication and stereotyped behaviors and interests. Here, we aimed to investigate the state of several key players in the dopamine and glutamate neurotransmission systems in the valproic acid (VPA) animal model that was administered to E12.5 pregnant females as a single dose (450 mg/kg). We report no alterations in the number of mesencephalic dopamine neurons or in protein levels of tyrosine hydroxylase in either the striatum or the nucleus accumbens. In females prenatally exposed to VPA, levels of dopamine were slightly decreased while the ratio of DOPAC/dopamine was increased in the dorsal striatum, suggesting increased turn-over of dopamine tone. In turn, levels of D1 and D2 dopamine receptor mRNAs were increased in the nucleus accumbens of VPA mice suggesting upregulation of the corresponding receptors. We also report decreased protein levels of striatal parvalbumin and increased levels of p-mTOR in the cerebellum and the motor cortex of VPA mice. mRNA levels of mGluR1, mGluR4, and mGluR5 and the glutamate receptor subunits NR1, NR2A, and NR2B were not altered by VPA, nor were protein levels of NR1, NR2A, and NR2B and those of BDNF and TrkB. These findings are of interest as clinical trials aiming at the dopamine and glutamate systems are being considered.
Assuntos
Transtorno do Espectro Autista , Ácido Valproico , Gravidez , Feminino , Camundongos , Animais , Ácido Valproico/farmacologia , Dopamina/metabolismo , Modelos Animais de Doenças , GlutamatosRESUMO
The reduction in antimicrobial activity at high bacterial counts is a microbiological phenomenon known as the inoculum effect (IE). In a previous in vitro study, a significant IE was observed for polymyxin B (PMB) against a clinical isolate of Acinetobacter baumannii, and well described by a new pharmacokinetic-pharmacodynamic model. Few in vivo studies have investigated the impact of inoculum size on survival or antibiotic efficacy. Therefore, our objective was to confirm the influence of inoculum size of this A. baumannii clinical isolate on PMB in vivo effect over time. Pharmacokinetics and pharmacodynamics of PMB after a single subcutaneous administration (1, 15 and 40 mg/kg) were studied in a neutropenic murine thigh infection model. The impact of A. baumannii inoculum size (105, 106 and 107 CFU/thigh) on PMB efficacy was also evaluated. In vivo PMB PK was well described by a two-compartment model including saturable absorption from the subcutaneous injection site and linear elimination. The previous in vitro PD model was modified to adequately describe the decrease of PMB efficacy with increased inoculum size in infected mice. The IE was modeled as a decrease of 32% in the in vivo PMB bactericidal effect when the starting inoculum increases from 105 to 107 CFU/thigh. Although not as important as previously characterized in vitro an IE was confirmed in vivo.
RESUMO
Antibiotic excretion into milk depends on several factors such as the compound's physicochemical properties, the animal physiology, and the milk composition. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model describing the passage of drugs into the milk of lactating species. The udder is described as a permeability limited compartment, divided into vascular, extracellular water (EW), intracellular water (IW) and milk, which was stored in alveolar and cistern compartments. The pH and ionization in each compartment and the binding to IW components and to milk fat, casein, whey protein, calcium, and magnesium were considered. Bidirectional passive diffusion across the blood-milk barrier was implemented, based on in vitro permeability studies. The model application used to predict the distribution of oxytetracycline in cow and goat milk, after different doses and routes of administration, was successful. By integrating inter-individual variability and uncertainty, the model also allowed a suitable estimation of the withdrawal periods. Further work is in progress to evaluate the predictive ability of the PBPK model for compounds with different physico-chemical properties that are potentially actively transported in order to extrapolate the excretion of xenobiotics in milk of various animal species including humans.
Assuntos
Bovinos/sangue , Cabras/sangue , Lactação , Leite/química , Modelos Biológicos , Oxitetraciclina/farmacocinética , Animais , Antibacterianos , Área Sob a Curva , Feminino , Glândulas Mamárias Animais/fisiologia , Oxitetraciclina/sangue , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Mechanical ventilation for pneumonia may contribute to lung injury due to factors that include mitochondrial dysfunction, and mesenchymal stem cells may attenuate injury. This study hypothesized that mechanical ventilation induces immune and mitochondrial dysfunction, with or without pneumococcal pneumonia, that could be mitigated by mesenchymal stem cells alone or combined with antibiotics. METHODS: Male rabbits underwent protective mechanical ventilation (8 ml/kg tidal volume, 5 cm H2O end-expiratory pressure) or adverse mechanical ventilation (20 ml/kg tidal-volume, zero end-expiratory pressure) or were allowed to breathe spontaneously. The same settings were then repeated during pneumococcal pneumonia. Finally, infected animals during adverse mechanical ventilation received human umbilical cord-derived mesenchymal stem cells (3 × 106/kg, intravenous) and/or ceftaroline (20 mg/kg, intramuscular) or sodium chloride, 4 h after pneumococcal challenge. Twenty-four-hour survival (primary outcome), lung injury, bacterial burden, immune and mitochondrial dysfunction, and lung transcriptomes (secondary outcomes) were assessed. RESULTS: High-pressure adverse mechanical ventilation reduced the survival of infected animals (0%; 0 of 7) compared with spontaneous breathing (100%; 7 of 7) and protective mechanical ventilation (86%; 6 of 7; both P < 0.001), with higher lung pathology scores (median [interquartile ranges], 5.5 [4.5 to 7.0] vs. 12.6 [12.0 to 14.0]; P = 0.046), interleukin-8 lung concentrations (106 [54 to 316] vs. 804 [753 to 868] pg/g of lung; P = 0.012), and alveolar mitochondrial DNA release (0.33 [0.28 to 0.36] vs. 0.98 [0.76 to 1.21] ng/µl; P < 0.001) compared with infected spontaneously breathing animals. Survival (0%; 0 of 7; control group) was improved by mesenchymal stem cells (57%; 4 of 7; P = 0.001) or ceftaroline alone (57%; 4 of 7; P < 0.001) and improved even more with a combination treatment (86%; 6 of 7; P < 0.001). Mesenchymal stem cells reduced lung pathology score (8.5 [7.0 to 10.5] vs. 12.6 [12.0 to 14.0]; P = 0.043) and alveolar mitochondrial DNA release (0.39 (0.34 to 0.65) vs. 0.98 (0.76 to 1.21) ng/µl; P = 0.025). Mesenchymal stem cells combined with ceftaroline reduced interleukin-8 lung concentrations (665 [595 to 795] vs. 804 [753 to 868] pg/g of lung; P = 0.007) compared to ceftaroline alone. CONCLUSIONS: In this preclinical study, mesenchymal stem cells improved the outcome of rabbits with pneumonia and high-pressure mechanical ventilation by correcting immune and mitochondrial dysfunction and when combined with the antibiotic ceftaroline was synergistic in mitigating lung inflammation.
Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Imunidade Celular/fisiologia , Mitocôndrias/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/terapia , Respiração Artificial/efeitos adversos , Animais , Masculino , Células-Tronco Mesenquimais/fisiologia , Mitocôndrias/metabolismo , Pneumonia Pneumocócica/metabolismo , Estudos Prospectivos , Coelhos , Distribuição AleatóriaRESUMO
BACKGROUND: We conducted a prospective study in ICU patients of two tertiary hospitals in order to determine basic pharmacokinetic (PK) parameters, associated variation and target attainment rates for anidulafungin, micafungin and caspofungin. METHODS: Serum samples from patients treated for 7 days with the standard doses of anidulafungin (N = 13), micafungin (N = 14) or caspofungin (N = 7) were analysed by validated chromatographic methods. PK parameters determined with non-compartmental analysis were correlated with demographic, laboratory and disease severity characteristics. The percentages of patients attaining drug exposures described in the summary of product characteristics (SmPC) documents and preclinical PK/PD targets for stasis were estimated. RESULTS: The median (range) AUC24 was 101.46 (54.95-274.15) mg·h/L for anidulafungin, 79.35 (28.00-149.30) mg·h/L for micafungin and 48.46 (19.44-103.69) mg·h/L for caspofungin. The interindividual variability of anidulafungin, micafungin and caspofungin AUC24 was 46%-58%, attributed mainly to variability in volume of distribution (V), clearance (CL) and in both V and CL, respectively. Significant correlations were found between anidulafungin AUC24 and BMI (rs = -0.670, P = 0.012) and liver enzymes (rs = 0.572-0.665, P = 0.013-0.041) and between caspofungin Cmin and transaminase levels (rs = -0.775 to -0.786, P = 0.036-0.041). Less than 50% of our patients attained the corresponding SmPC median AUC24s and none of the patients attained the PK/PD targets for Candida albicans and Candida parapsilosis. CONCLUSIONS: Anidulafungin exposure in ICU patients was comparable with that reported in non-ICU patients and in healthy volunteers. Micafungin exposure was comparable to that of other patients but â¼30% lower than that in healthy volunteers, whereas caspofungin exposure was rather low (â¼50% lower than in healthy volunteers). Larger interindividual variability (50%-60%) was recorded in ICU patients compared with other groups for all three echinocandins.