Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 33(8): 2562-2582, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34015121

RESUMO

The accuracy of trait measurements greatly affects the quality of genetic analyses. During automated phenotyping, trait measurement errors, i.e. differences between automatically extracted trait values and ground truth, are often treated as random effects that can be controlled by increasing population sizes and/or replication number. In contrast, there is some evidence that trait measurement errors may be partially under genetic control. Consistent with this hypothesis, we observed substantial nonrandom, genetic contributions to trait measurement errors for five maize (Zea mays) tassel traits collected using an image-based phenotyping platform. The phenotyping accuracy varied according to whether a tassel exhibited "open" versus. "closed" branching architecture, which is itself under genetic control. Trait-associated SNPs (TASs) identified via genome-wide association studies (GWASs) conducted on five tassel traits that had been phenotyped both manually (i.e. ground truth) and via feature extraction from images exhibit little overlap. Furthermore, identification of TASs from GWASs conducted on the differences between the two values indicated that a fraction of measurement error is under genetic control. Similar results were obtained in a sorghum (Sorghum bicolor) plant height dataset, demonstrating that trait measurement error is genetically determined in multiple species and traits. Trait measurement bias cannot be controlled by increasing population size and/or replication number.


Assuntos
Estudo de Associação Genômica Ampla , Processamento de Imagem Assistida por Computador/métodos , Locos de Características Quantitativas , Sorghum/fisiologia , Zea mays/fisiologia , Variação Genética , Genótipo , Inflorescência/anatomia & histologia , Inflorescência/genética , Inflorescência/fisiologia , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Zea mays/anatomia & histologia , Zea mays/genética
2.
Plant Phenomics ; 2021: 4238701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33728412

RESUMO

The tassel of the maize plant is responsible for the production and dispersal of pollen for subsequent capture by the silk (stigma) and fertilization of the ovules. Both the amount and timing of pollen shed are physiological traits that impact the production of a hybrid seed. This study describes an automated end-to-end pipeline that combines deep learning and image processing approaches to extract tassel flowering patterns from time-lapse camera images of plants grown under field conditions. Inbred lines from the SAM and NAM diversity panels were grown at the Curtiss farm at Iowa State University, Ames, IA, during the summer of 2016. Using a set of around 500 pole-mounted cameras installed in the field, images of plants were captured every 10 minutes of daylight hours over a three-week period. Extracting data from imaging performed under field conditions is challenging due to variabilities in weather, illumination, and the morphological diversity of tassels. To address these issues, deep learning algorithms were used for tassel detection, classification, and segmentation. Image processing approaches were then used to crop the main spike of the tassel to track reproductive development. The results demonstrated that deep learning with well-labeled data is a powerful tool for detecting, classifying, and segmenting tassels. Our sequential workflow exhibited the following metrics: mAP for tassel detection was 0.91, F1 score obtained for tassel classification was 0.93, and accuracy of semantic segmentation in creating a binary image from the RGB tassel images was 0.95. This workflow was used to determine spatiotemporal variations in the thickness of the main spike-which serves as a proxy for anthesis progression.

3.
Appl Plant Sci ; 8(7): e11375, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32765974

RESUMO

PREMISE: Trichomes are hair-like appendages extending from the plant epidermis. They serve many important biotic roles, including interference with herbivore movement. Characterizing the number, density, and distribution of trichomes can provide valuable insights on plant response to insect infestation and define the extent of plant defense capability. Automated trichome counting would speed up this research but poses several challenges, primarily because of the variability in coloration and the high occlusion of the trichomes. METHODS AND RESULTS: We developed a simplified method for image processing for automated and semi-automated trichome counting. We illustrate this process using 30 leaves from 10 genotypes of soybean (Glycine max) differing in trichome abundance. We explored various heuristic image-processing methods including thresholding and graph-based algorithms to facilitate trichome counting. Of the two automated and two semi-automated methods for trichome counting tested and with the help of regression analysis, the semi-automated manually annotated trichome intersection curve method performed best, with an accuracy of close to 90% compared with the manually counted data. CONCLUSIONS: We address trichome counting challenges including occlusion by combining image processing with human intervention to propose a semi-automated method for trichome quantification. This provides new opportunities for the rapid and automated identification and quantification of trichomes, which has applications in a wide variety of disciplines.

4.
Proc Natl Acad Sci U S A ; 116(22): 11063-11068, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31088969

RESUMO

Root phenotypes are increasingly explored as predictors of crop performance but are still challenging to characterize. Media that mimic field conditions (e.g., soil, sand) are opaque to most forms of radiation, while transparent media do not provide field-relevant growing conditions and phenotypes. We describe here a "transparent soil" formed by the spherification of hydrogels of biopolymers. It is specifically designed to support root growth in the presence of air, water, and nutrients, and allows the time-resolved phenotyping of roots in vivo by both photography and microscopy. The roots developed by soybean plants in this medium are significantly more similar to those developed in real soil than those developed in hydroponic conditions and do not show signs of hypoxia. Lastly, we show that the granular nature and tunable properties of these hydrogel beads can be leveraged to investigate the response of roots to gradients in water availability and soil stiffness.


Assuntos
Hidrogéis/química , Raízes de Plantas/classificação , Raízes de Plantas/fisiologia , Solo/química , Meios de Cultura , Fenótipo , Glycine max/fisiologia , Técnicas de Cultura de Tecidos
5.
Plant Physiol ; 179(1): 24-37, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389784

RESUMO

Because structural variation in the inflorescence architecture of cereal crops can influence yield, it is of interest to identify the genes responsible for this variation. However, the manual collection of inflorescence phenotypes can be time consuming for the large populations needed to conduct genome-wide association studies (GWAS) and is difficult for multidimensional traits such as volume. A semiautomated phenotyping pipeline, TIM (Toolkit for Inflorescence Measurement), was developed and used to extract unidimensional and multidimensional features from images of 1,064 sorghum (Sorghum bicolor) panicles from 272 genotypes comprising a subset of the Sorghum Association Panel. GWAS detected 35 unique single-nucleotide polymorphisms associated with variation in inflorescence architecture. The accuracy of the TIM pipeline is supported by the fact that several of these trait-associated single-nucleotide polymorphisms (TASs) are located within chromosomal regions associated with similar traits in previously published quantitative trait locus and GWAS analyses of sorghum. Additionally, sorghum homologs of maize (Zea mays) and rice (Oryza sativa) genes known to affect inflorescence architecture are enriched in the vicinities of TASs. Finally, our TASs are enriched within genomic regions that exhibit high levels of divergence between converted tropical lines and cultivars, consistent with the hypothesis that these chromosomal intervals were targets of selection during modern breeding.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Processamento de Imagem Assistida por Computador/métodos , Sorghum/genética , Cromossomos de Plantas , Genes de Plantas , Fenótipo , Polimorfismo de Nucleotídeo Único , Sorghum/anatomia & histologia , Sorghum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA