Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255848

RESUMO

The cyanobacterial strain Cyanobacterium sp. IPPAS B-1200 isolated from Lake Balkhash is characterized by high relative amounts of myristic (30%) and myristoleic (10%) acids. The remaining fatty acids (FAs) are represented mainly by palmitic (20%) and palmitoleic (40%) acids. We expressed the genes for lysophosphatidic acid acyltransferase (LPAAT; EC 2.3.1.51) and Δ9 fatty acid desaturase (FAD; EC 1.14.19.1) from Cyanobacterium sp. IPPAS B-1200 in Synechococcus elongatus PCC 7942, which synthesizes myristic and myristoleic acids at the level of 0.5-1% and produces mainly palmitic (~60%) and palmitoleic (35%) acids. S. elongatus cells that expressed foreign LPAAT synthesized myristic acid at 26%, but did not produce myristoleic acid, suggesting that Δ9-FAD of S. elongatus cannot desaturate FAs with chain lengths less than C16. Synechococcus cells that co-expressed LPAAT and Δ9-FAD of Cyanobacterium synthesized up to 45% palmitoleic and 9% myristoleic acid, suggesting that Δ9-FAD of Cyanobacterium is capable of desaturating saturated acyl chains of any length.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Monoinsaturados , Estearoil-CoA Dessaturase , Aciltransferases/genética , Ácidos Graxos
2.
Biochimie ; 218: 76-84, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37567357

RESUMO

The PAS (Per-ARNT-Sim) domain is a sensory protein regulatory module found in archaea, prokaryotes, and eukaryotes. Histidine and serine/threonine protein kinases, chemo- and photoreceptors, circadian rhythm regulators, ion channels, phosphodiesterases, and other cellular response regulators are among these proteins. Hik33 is a multifunctional sensory histidine kinase that is implicated in cyanobacterial responses to cold, salt, hyperosmotic, and oxidative stressors. The functional roles of individual Hik33 domains in signal transduction were investigated in this study. Synechocystis Hik33 deletion variants were developed, in which either both or a portion of the transmembrane domains and/or the PAS domain were deleted. Cold stress was applied to the mutant strains either under illumination or in the dark. The findings show that the transmembrane domains govern temperature responses, whereas PAS domain may be involved in regulation of downstream gene expression in light-dependent manner.


Assuntos
Synechocystis , Histidina Quinase/genética , Histidina Quinase/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Luz , Regulação Bacteriana da Expressão Gênica
3.
Ecol Evol ; 13(8): e10389, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575592

RESUMO

Molecular characterization of type specimens is a powerful tool used in clarifying species identity/circumscription, as well as establishing the taxonomic and phylogenetic status of organisms in question. However, DNA sequencing of aged herbarium collections can be a challenge due to the quantity and quality of DNA still present in the specimens. Herein, we report a custom DNA isolation protocol suitable for processing minute quantities of old specimen tissue and its utilization via high-throughput sequencing technologies to obtain, for the first time, the genome assembly of the 134-year-old holotype of Boletus subvelutipes Peck, a North American fleshy pored mushroom of taxonomic and historical significance. A side-by-side evaluation of our DNA isolation method with that of a commercial "kit" by Qiagen is also presented. By relying on the type material, we have established the genetic identity of B. subvelutipes, as well as providing preliminary phylogenetic evidence for its generic affinities in Neoboletus within Boletaceae. The reference genome of the B. subvelutipes holotype provides a resource for future comparative genomic studies, taxonomic revisions in Boletaceae, and other evolutionary studies of fungi.

4.
Biochim Biophys Acta Bioenerg ; 1862(12): 148494, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534546

RESUMO

Quenching of excess excitation energy is necessary for the photoprotection of light-harvesting complexes. In cyanobacteria, quenching of phycobilisome (PBS) excitation energy is induced by the Orange Carotenoid Protein (OCP), which becomes photoactivated under high light conditions. A decrease in energy transfer efficiency from the PBSs to the reaction centers decreases photosystem II (PS II) activity. However, quantitative analysis of OCP-induced photoprotection in vivo is complicated by similar effects of both photochemical and non-photochemical quenching on the quantum yield of the PBS fluorescence overlapping with the emission of chlorophyll. In the present study, we have analyzed chlorophyll a fluorescence induction to estimate the effective cross-section of PS II and compared the effects of reversible OCP-dependent quenching of PBS fluorescence with reduction of PBS content upon nitrogen starvation or mutations of key PBS components. This approach allowed us to estimate the dependency of the rate constant of PS II primary electron acceptor reduction on the amount of PBSs in the cell. We found that OCP-dependent quenching triggered by blue light affects approximately half of PBSs coupled to PS II, indicating that under normal conditions, the concentration of OCP is not sufficient for quenching of all PBSs coupled to PS II.


Assuntos
Complexo de Proteína do Fotossistema II , Ficobilissomas
5.
Gene ; 764: 145055, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32882332

RESUMO

Cyanobacteria are model photosynthetic prokaryotic organisms often used in biotechnology to produce biofuels including alcohols. The effect of alcohols on cyanobacterial cell physiology and specifically on membrane fluidity is poorly understood. Previous research on various primary aliphatic alcohols found that alcohols with a short hydrocarbon chain (C1-C3) do not affect expression of genes related to membrane physical state. In addition, less water-soluble alcohols with a hydrocarbon chain longer than C8 are found to have a reduced ability to reach cellular membranes hence do not drastically change membrane physical state or induce expression of stress-responsive genes. Therefore, hexan-1-ol (C6) is suggested to have the most profound effect on cyanobacterial membrane physical state. Here, we studied the effects of hexan-1-ol on the cyanobacterium Synechocystis sp. PCC 6803 transcriptome. The transcriptome data obtained is compared to the previously reported analysis of gene expression induced by benzyl alcohol and butan-1-ol. The set of genes whose expression is induced after exposure to all three studied alcohols is identified. The expression under alcohol stress for several general stress response operons is analyzed, and examples of antisense interactions of RNA are investigated.


Assuntos
Membrana Celular/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Hexanóis/toxicidade , Estresse Fisiológico/genética , Synechocystis/genética , 1-Butanol/toxicidade , Álcool Benzílico/toxicidade , Óperon/efeitos dos fármacos , Óperon/genética , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA-Seq , Estresse Fisiológico/efeitos dos fármacos , Synechocystis/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
6.
Biochimie ; 179: 46-53, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32946991

RESUMO

Fatty acid desaturases (FADs) represent a class of oxygen-dependent enzymes that dehydrogenate C-C bonds in the fatty acids (FAs) producing unsaturated CC double bonds that markedly change the properties of biological membranes. FADs are highly specific towards their acyl substrates, the position and configuration of the introduced double bonds. The double bond positioning of soluble acyl-carrier-protein Δ9-FADs was determined relative to the carboxyl end of a FA. Similar mode was suggested for the acyl-lipid Δ12-FADs (also known as ω6-FADs), however, their exact counting order remain unknown. Here we used monounsaturated odd- (17:1Δ10) and even-chain (18:1Δ11) FAs to show that acyl-lipid Δ12-FADs of, at least, two cyanobacterial species, Gloeobacter violaceus and Synechocystis sp. strain PCC 6803, use neither end of the fatty acid (Δ or ω) as a counting reference point; but count three carbons toward the methyl end from an existing double bond in the monoene precursors irrespective of a FA chain length.


Assuntos
Carbono/química , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/provisão & distribuição , Ácidos Graxos Monoinsaturados/química , Carbono/metabolismo , Cianobactérias/química , Cianobactérias/enzimologia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Monoinsaturados/isolamento & purificação , Ácidos Graxos Monoinsaturados/metabolismo , Galactolipídeos/análise , Glicolipídeos/análise , Metabolismo dos Lipídeos , Fosfatidilgliceróis/análise , Espectrometria de Massas por Ionização por Electrospray , Synechococcus/química , Synechococcus/enzimologia , Synechocystis/química , Synechocystis/enzimologia
7.
Biochimie ; 177: 63-67, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32805305

RESUMO

The main limiting factors for RNA-Seq analysis are quality and quantity of the isolated mRNA. In prokaryotes, the proportion of messenger RNA to total RNA is rather low. Therefore, the main strategy of library preparation for sequencing is mRNA enrichment. Ribosomal and transfer RNAs, both monophosphorylated at the 5'-ends, are the major fractions of total RNA, while the bulk of primary transcripts is triphosphorylated at the 5'-teminus. Due to its low molecular weight, transfer RNA could be easily removed by a quick precipitation in LiCl solution. Ribosomal RNA may be degraded enzymatically by 5'-end terminal exonuclease XRN-1. These steps allow enriching samples in mRNA during the first stages of RNA-Seq library preparation. The desired level of fragmentation of enriched mRNA necessary for the 2nd generation sequencing can be controlled by the duration of incubation at elevated temperatures in the presence of Mg2+-ions. Here, we describe a simple protocol for construction of the primary prokaryotic mRNA-saturated library without long depletion procedures.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Mensageiro/isolamento & purificação , Análise de Sequência de RNA/métodos , Cianobactérias/genética , Exorribonucleases/química , Exorribonucleases/metabolismo , Perfilação da Expressão Gênica/métodos , Temperatura Alta , Magnésio/farmacologia , Polinucleotídeo 5'-Hidroxiquinase/química , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Células Procarióticas/química , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo
8.
Life (Basel) ; 9(3)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434306

RESUMO

Systemic analysis of stress-induced transcription in the cyanobacterium Synechocystis sp. strain PCC 6803 identifies a number of genes as being induced in response to most abiotic stressors (heat, osmotic, saline, acid stress, strong light, and ultraviolet radiation). Genes for heat-shock proteins (HSPs) are activated by all these stresses and form a group that universally responds to all environmental changes. The functions of universal triggers of stress responses in cyanobacteria can be performed by reactive oxygen species (ROS), in particular H2O2, as well as changes in the redox potential of the components of the photosynthetic electron transport chain. The double mutant of Synechocystis sp. PCC 6803 (katG/tpx, or sll1987/sll0755), which is defective in antioxidant enzymes catalase (KatG) and thioredoxin peroxidase (Tpx), cannot grow in the presence of exogenous hydrogen peroxide (H2O2); and it is extremely sensitive to low concentrations of H2O2, especially under conditions of cold stress. Experiments on this mutant demonstrate that H2O2 is involved in regulation of gene expression that responds to a decrease in ambient temperature, and affects both the perception and the signal transduction of cold stress. In addition, they suggest that formation of ROS largely depends on the physical state of the membranes such as fluidity or viscosity. In cyanobacteria, an increase in membrane turnover leads to a decrease in the formation of ROS and an increase in resistance to cold stress. Therefore: (1) H2O2 is the universal trigger of stress responses in cyanobacterial cells; (2) ROS formation (in particular, H2O2) depends on the physical properties of both cytoplasmic and thylakoid membranes; (3) The destructive effect of H2O2 is reduced by increasing of fluidity of biological membranes.

9.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975816

RESUMO

A new presumably simple consortium of a Leptolyngbya sp. and a Porphyrobacter sp. was isolated from Tolbo Lake in Mongolia. The draft genome sequences of both species are reported. The consortium has been deposited in the Collection of Microalgae and Cyanobacteria of the Institute of Plant Physiology, Moscow, Russia, under the accession number IPPAS B-1204.

10.
Biochimie ; 160: 200-209, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30898645

RESUMO

Here, for the first time, we report the presence of highly active extracellular carbonic anhydrase (CA) of α-class in cyanobacterial cells. The enzyme activity was confirmed both in vivo in intact cells and in vitro, using the recombinant protein. CA activity in intact cells of Cyanothece sp. ATCC 51142 reached ∼0.6 Wilbur-Anderson units (WAU) per 1 mg of total cell protein, and it was inhibited by a specific CAs inhibitor, ethoxyzolamide. The genes cce_4328 (ecaA) and cce_0871 (ecaB), encoding two potential extracellular CAs of Cyanothece have been cloned, and the corresponding proteins EcaA and EcaB, representing CAs of α- and ß-class, respectively, have been heterologously expressed in Escherichia coli. High specific activity (∼1.1 × 104 WAU per 1 mg of target protein) was detected for the recombinant EcaA only. The presence of EcaA in the outer cellular layers of Cyanothece was confirmed by immunological analysis with antibodies raised against the recombinant protein. The absence of redox regulation of EcaA activity indicates that this protein does not possess a disulfide bond essential for some α-class CAs. The content and activity of EcaA in a fraction of periplasmic proteins was higher in Cyanothece cells grown at ambient concentration of CO2 (0.04%) compared to those grown at an elevated CO2 concentration (1.7%). At the same time, the level of ecaA gene mRNA varied insignificantly in response to changes in CO2 supply. Our results indicate that EcaA is responsible for CA activity of intact Cyanothece cells and point to its possible physiological role under low-CO2 conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Cyanothece/enzimologia , Espaço Extracelular/enzimologia , Proteínas Recombinantes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Anidrases Carbônicas/genética , Anidrases Carbônicas/isolamento & purificação , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
11.
Plant J ; 96(5): 1007-1017, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30194781

RESUMO

Cyanobacteria are prokaryotic photosynthetic organisms widely used in biotechnology, photosynthesis and abiotic stress research. There are several cyanobacterial strains modified to produce biofuels, but the influence of alcohols on cyanobacterial cell physiology is poorly understood. Here, we conducted a systematic study of the effects of nine primary aliphatic alcohols and an aromatic benzyl alcohol on both membrane physical state and the expression of genes for fatty acid desaturases (FADs) in a model cyanobacterium Synechocystis sp. strain PCC 6803. Hexan-1-ol was found to have the most membrane fluidizing action among all alcohols studied, with its efficiency correlating with both duration of treatment and alcohol concentration. A prolonged exposure to alcohol results in a continuous loss of unsaturated fatty acids (FAs) followed by cell death, an undesired challenge that should be considered in cyanobacterial biotechnology. We suggest that membrane fluidization is the key component in alcohol stress causing inactivation of FADs and resulting in a lethal depletion of unsaturated FAs. Due to the most pronounced effects of alcohol- and heat-induced membrane fluidization on desB encoding a terminal ω3-FAD, we propose to call desB a 'viscosity gene' in analogy to heat-induced 'fluidity gene' hspA.


Assuntos
Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Synechocystis/metabolismo , Álcoois/metabolismo , Proteínas de Algas/metabolismo , Membrana Celular/fisiologia , Ácidos Graxos Dessaturases/metabolismo , Polarização de Fluorescência , Temperatura Alta , Fluidez de Membrana , Estresse Fisiológico
12.
Plant Cell Physiol ; 59(6): 1255-1264, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29590456

RESUMO

The double mutant ΔkatG/tpx of cyanobacterium Synechocystis sp. strain PCC 6803, defective in the anti-oxidative enzymes catalase (KatG) and thioredoxin peroxidase (Tpx), is unable to grow in the presence of exogenous H2O2. The ΔkatG/tpx mutant is shown to be extremely sensitive to very low concentrations of H2O2, especially when intensified with cold stress. Analysis of gene expression in both wild-type and ΔkatG/tpx mutant cells treated by combined cold/oxidative stress revealed that H2O2 participates in regulation of expression of cold-responsive genes, affecting either signal perception or transduction. The central role of a transmembrane stress-sensing histidine kinase Hik33 in the cold/oxidative signal transduction pathway is discussed.


Assuntos
Histidina Quinase/metabolismo , Peróxido de Hidrogênio/metabolismo , Transdução de Sinais , Synechocystis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Peróxido de Hidrogênio/análise , Luz , Mutação , Estresse Oxidativo , Estresse Fisiológico , Synechocystis/metabolismo , Synechocystis/fisiologia , Synechocystis/efeitos da radiação
13.
Genome Announc ; 6(5)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437103

RESUMO

We report here two draft cyanobacterial genome sequences, those of Cyanobacterium aponinum IPPAS B-1201, isolated from a hot spring in the Turgen Gorge (Kazakhstan), and the uncharacterized cyanobacterium IPPAS B-1203, isolated from a hot spring in Karlovy Vary (Czech Republic). These two strains were deposited at the Collection of Microalgae (IPPAS) of the Timiryazev Institute of Plant Physiology.

14.
Biophys J ; 113(2): 402-414, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28746851

RESUMO

Orange Carotenoid Protein (OCP) is known as an effector and regulator of cyanobacterial photoprotection. This 35 kDa water-soluble protein provides specific environment for blue-green light absorbing keto-carotenoids, which excitation causes dramatic but fully reversible rearrangements of the OCP structure, including carotenoid translocation and separation of C- and N-terminal domains upon transition from the basic orange to photoactivated red OCP form. Although recent studies greatly improved our understanding of the OCP photocycle and interaction with phycobilisomes and the fluorescence recovery protein, the mechanism of OCP assembly remains unclear. Apparently, this process requires targeted delivery and incorporation of a highly hydrophobic carotenoid molecule into the water-soluble apoprotein of OCP. Recently, we introduced, to our knowledge, a novel carotenoid carrier protein, COCP, which consists of dimerized C-domain(s) of OCP and can combine with the isolated N-domain to form transient OCP-like species. Here, we demonstrate that in vitro COCP efficiently transfers otherwise tightly bound carotenoid to the full-length OCP apoprotein, resulting in formation of photoactive OCP from completely photoinactive species. We accurately analyze the peculiarities of this process that, to the best of our knowledge, appears unique, a previously uncharacterized protein-to-protein carotenoid transfer mechanism. We hypothesize that a similar OCP assembly can occur in vivo, substantiating specific roles of the COCP carotenoid carrier in cyanobacterial photoprotection.


Assuntos
Apoproteínas/metabolismo , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Apoproteínas/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrodinâmica , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Processos Fotoquímicos , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Synechocystis , Termodinâmica , Difração de Raios X
16.
Front Physiol ; 8: 142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344560

RESUMO

Ethylene is known to influence the cell cycle (CC) via poorly characterized roles whilst nitric oxide (NO) has well-established roles in the animal CC but analogous role(s) have not been reported for plants. As NO and ethylene signaling events often interact we examined their role in CC in cultured cells derived from Arabidopsis thaliana wild-type (Col-0) plants and from ethylene-insensitive mutant ein2-1 plants. Both NO and ethylene were produced mainly during the first 5 days of the sub-cultivation period corresponding to the period of active cell division. However, in ein2-1 cells, ethylene generation was significantly reduced while NO levels were increased. With application of a range of concentrations of the NO donor, sodium nitroprusside (SNP) (between 20 and 500 µM) ethylene production was significantly diminished in Col-0 but unchanged in ein2-1 cells. Flow cytometry assays showed that in Col-0 cells treatments with 5 and 10 µM SNP concentrations led to an increase in S-phase cell number indicating the stimulation of G1/S transition. However, at ≥20 µM SNP CC progression was restrained at G1/S transition. In the mutant ein2-1 strain, the index of S-phase cells was not altered at 5-10 µM SNP but decreased dramatically at higher SNP concentrations. Concomitantly, 5 µM SNP induced transcription of genes encoding CDKA;1 and CYCD3;1 in Col-0 cells whereas transcription of CDKs and CYCs were not significantly altered in ein2-1 cells at any SNP concentrations examined. Hence, it is appears that EIN2 is required for full responses at each SNP concentration. In ein2-1 cells, greater amounts of NO, reactive oxygen species, and the tyrosine-nitrating peroxynitrite radical were detected, possibly indicating NO-dependent post-translational protein modifications which could stop CC. Thus, we suggest that in Arabidopsis cultured cells NO affects CC progression as a concentration-dependent modulator with a dependency on EIN2 for both ethylene production and a NO/ethylene regulatory function.

17.
FEMS Microbiol Lett ; 364(4)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130365

RESUMO

A cyanobacterial strain from Lake Shar-Nuur, a freshwater lake in Mongolia, was isolated and characterized by a polyphasic approach. According to the 16S ribosomal RNA gene sequence, this strain (IPPAS B-1220) belongs to a newly described genus Desertifilum. In general, strains of Desertifilum maintain their genetic stability, as seen from the analysis of the 16S rRNA gene and 16S-23S rRNA internal transcribed spacer sequences from strains collected at distant locations. The newly discovered strain is characterized by an unusual fatty acid composition (16:1Δ7 and 16:2Δ7,10). Analysis of its draft genomic sequence reveals the presence of six genes for the acyl-lipid desaturases: two Δ9-desaturases, desC1 and desC2; two Δ12-desaturases, desA1 and desA2; one desaturase of unknown specificity, desX; and one gene for the bacillary-type desaturase, desG, which supposedly encodes an ω9-desaturase. A scheme for a fatty acid desaturation pathway that describes the biosynthesis of 16:1Δ7 and 16:2Δ7,10 fatty acids in Desertifilum is proposed.


Assuntos
Cianobactérias/genética , Cianobactérias/fisiologia , Termotolerância , Técnicas de Tipagem Bacteriana , Cianobactérias/química , Cianobactérias/classificação , DNA Bacteriano/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/química , Água Doce/microbiologia , Lagos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Biophys J ; 112(1): 46-56, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076815

RESUMO

Orange carotenoid protein (OCP), responsible for the photoprotection of the cyanobacterial photosynthetic apparatus under excessive light conditions, undergoes significant rearrangements upon photoconversion and transits from the stable orange to the signaling red state. This is thought to involve a 12-Å translocation of the carotenoid cofactor and separation of the N- and C-terminal protein domains. Despite clear recent progress, the detailed mechanism of the OCP photoconversion and associated photoprotection remains elusive. Here, we labeled the OCP of Synechocystis with tetramethylrhodamine-maleimide (TMR) and obtained a photoactive OCP-TMR complex, the fluorescence of which was highly sensitive to the protein state, showing unprecedented contrast between the orange and red states and reflecting changes in protein conformation and the distances from TMR to the carotenoid throughout the photocycle. The OCP-TMR complex was sensitive to the light intensity, temperature, and viscosity of the solvent. Based on the observed Förster resonance energy transfer, we determined that upon photoconversion, the distance between TMR (donor) bound to a cysteine in the C-terminal domain and the carotenoid (acceptor) increased by 18 Å, with simultaneous translocation of the carotenoid into the N-terminal domain. Time-resolved fluorescence anisotropy revealed a significant decrease of the OCP rotation rate in the red state, indicating that the light-triggered conversion of the protein is accompanied by an increase of its hydrodynamic radius. Thus, our results support the idea of significant structural rearrangements of OCP, providing, to our knowledge, new insights into the structural rearrangements of OCP throughout the photocycle and a completely novel approach to the study of its photocycle and non-photochemical quenching. We suggest that this approach can be generally applied to other photoactive proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Corantes Fluorescentes/química , Fotoperíodo , Modelos Moleculares , Conformação Proteica , Rodaminas/química , Solventes/química , Espectrometria de Fluorescência , Temperatura , Viscosidade
19.
Photosynth Res ; 133(1-3): 215-223, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28110449

RESUMO

Membrane fluidity is the important regulator of cellular responses to changing ambient temperature. Bacteria perceive cold by the transmembrane histidine kinases that sense changes in thickness of the cytoplasmic membrane due to its rigidification. In the cyanobacterium Synechocystis, about a half of cold-responsive genes is controlled by the light-dependent transmembrane histidine kinase Hik33, which also partially controls the responses to osmotic, salt, and oxidative stress. This implies the existence of some universal, but yet unknown signal that triggers adaptive gene expression in response to various stressors. Here we selectively probed the components of photosynthetic machinery and functionally characterized the thermodynamics of cyanobacterial photosynthetic membranes with genetically altered fluidity. We show that the rate of oxidation of the quinone pool (PQ), which interacts with both photosynthetic and respiratory electron transport chains, depends on membrane fluidity. Inhibitor-induced stimulation of redox changes in PQ triggers cold-induced gene expression. Thus, the fluidity-dependent changes in the redox state of PQ may universally trigger cellular responses to stressors that affect membrane properties.


Assuntos
Resposta ao Choque Frio/fisiologia , Fluidez de Membrana/fisiologia , Synechocystis/fisiologia , Anisotropia , Temperatura Baixa , Ácidos Graxos/metabolismo , Fluorescência , Regulação Bacteriana da Expressão Gênica , Cinética , Lipídeos de Membrana/metabolismo , Oxirredução , Plastoquinona/metabolismo , Análise Espectral Raman , Synechocystis/genética
20.
Genome Announc ; 4(6)2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27856594

RESUMO

Here, we report the draft genome of the filamentous cyanobacterium Desertifilum sp. strain IPPAS B-1220, isolated from Lake Shar-Nuur, Mongolia. The genome of 6.1 Mb codes for 5,113 genes. Genome mining revealed 10 clusters for the synthesis of bioactive compounds (nonribosomal peptides, polyketides, bacteriocins, and lantipeptides) with potential biotechnological or medical importance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA