Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 48(2): 796-804, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33128244

RESUMO

PURPOSE: To measure the radiosensitization by an Au-nanofilm (GNF) at a micrometer level on a radiochromic film (RCF) using confocal Raman spectroscopy (CRS). METHODS: Unlaminated radiochromic films were irradiated by 200 kVp x-ray from 0.3 to 50 Gy to obtain a calibration curve. Raman spectra of these films were measured by positioning the postirradiated RCF perpendicular to the CRS monochromatic beam and reading a depth profile of the film along the lateral axis. The Raman peak corresponding to the C ≡ C peak was obtained from a region of interest of 100 × 5 µm2 . To investigate the radiosensitization by GNF, two sets of RCF, one attached to a 100-nm thick GNF and the other without GNF were irradiated at 0.5 Gy by 50 and 120 kVp X-rays. The spatial resolution of the CRS on the RCF was quantified by the modulation transfer function method (MTF). Thus, in the spatial resolution determined by MTF, the doses deposited on the films were evaluated. The dose enhancement factor (DEF) was obtained in the measurable micro-size by comparing doses deposited on the RCFs with and without GNF. To verify the experimental results, Monte Carlo simulations following the experimental set up were performed using Geant4. In addition, analytical calculations for the radiosensitization by GNF were carried out. RESULTS: The confocal Raman spectroscopy on the RCF achieved a spatial resolution of ~6 µm. An experimental DEF within the first 6 µm depth from the surface of RCF was found to be 17.9 for 50 kVp and 14.7 for 120 kVp. The DEF for the same depth obtained by MC and analytical calculations was 13.53 and 9.75 for 50 kVp, and 10.63 and 6.67 for 120 kVp, respectively. CONCLUSIONS: The experimental DEF as a function of the distance from GNF was consistent with data from previous studies and the MC simulations, supporting that CRS in conjunction with the RCF is a feasible micrometer-resolution dosimeter.


Assuntos
Dosimetria Fotográfica , Análise Espectral Raman , Calibragem , Método de Monte Carlo , Raios X
2.
Phys Med ; 68: 1-9, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31715285

RESUMO

PURPOSE: To measure radioenhancement by gold nanoparticles (GNPs) using gold nanofilms (GNFs). METHODS: GNFs of 20-100 nm thicknesses were prepared. The GNF attached to radiochromic film (RCF) was irradiated using 50, 220 kVp, and 6 MV X-rays. The radiation doses to the active layer of RCF with and without GNF were measured using an optical flatbed scanner and Raman spectrometer to estimate the dose enhancement factor (DEF). For verification, analytical calculations of DEF within the thickness of active layer and the ranges of secondary electrons were carried out. RESULTS: The DEFs for GNFs of 20 to 100 nm thicknesses measured by an optical scanner ranged from 2.1 to 6.1 at 50 kVp and 1.6 to 4.9 at 220 kVp. Similarly, the DEFs measured by Raman spectroscopy ranged from 2.6 to 4.6 at 50 kVp and 2.2 to 4.8 at 220 kVp. The calculated DEFs ranged from 1.5 to 3.6 at 50 kVp and from 1.7 to 4.7 at 220 kVp. Almost no dose enhancement was observed in 6 MV X-ray. The analytical DEFs seemed to be underestimated by averaging local enhancement over the entire active layer. However, analytical DEFs within the ranges of secondary electrons was much higher than the measured macroscopic DEFs. CONCLUSIONS: The experimental and analytical approaches developed in this study could quantitatively estimate radioenhancement by GNPs. Due to a short range of low-energy electrons emitted from gold, the microscopic radioenhancement within the ranges of low-energy electrons would be particularly important in a cell.


Assuntos
Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas , Método de Monte Carlo , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia
3.
Med Phys ; 46(11): 5238-5248, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442302

RESUMO

PURPOSE: Micrometer spatial resolution dosimetry has become inevitable for advanced radiotherapy techniques. A new approach using radiochromic films was developed to measure a radiation dose at a micrometer spatial resolution by confocal Raman spectroscopy. METHODS: The commercial radiochromic films (RCF), EBT3 and EBT-XD, were irradiated with known doses using 50, 100, 200, and 300 kVp, and 6-MV x rays. The dose levels ranged from 0.3 to 50 Gy. The Raman mapping technique developed in our early study was used to readout an area of 100 × 100 µm2 on RCF with improved lateral and depth resolutions with confocal Raman spectrometry. The variation in Raman spectra of C-C-C deformation and C≡C stretching modes of diacetylene polymers around 676 and 2060 cm-1 , respectively, as a function of therapeutic x-ray doses, was measured. The single peak (SP) of C≡C and the peak ratio (PR) of C≡C band height to C-C-C band height with a spatial resolution of 10 µm on both types of RCF were evaluated, averaged, and plotted as a function of dose. An achievable spatial resolution, clinically useful dose range, dosimetric sensitivity, dose uniformity, and postirradiation stability as well as the orientation, energy, and dose rate dependence, of both types of RCFs, were characterized by the technique developed in this study. RESULTS: A spatial resolution on RCF achieved by SP and PR methods was ~4.5 and ~2.9 µm, respectively. Raman spectroscopy data showed dose nonuniformity of ~11% in SP method and <3% in PR method. The SP method provided dose ranges of up to ~10 and ~20 Gy for EBT3 and EBT-XD films, respectively while the PR method up to ~30 and ~50 Gy. The PR method diminished the orientation effect. The percent difference between landscape and portrait orientations for the EBT3 and the EBT-XD films at 4 Gy had an acceptable level of 1.2% and 2.4%, respectively. With both SP and PR methods, the EBT3 and the EBT-XD films showed weak energy (within ~10% and ~3% for SP and PR methods, respectively) and dose rate dependence (within ~5% and ~3% for SP and PR methods, respectively) and had a stable response after 24-h postirradiation. CONCLUSIONS: A technique for micrometer-resolution dosimetry was successfully developed by detecting radiation-induced Raman shift on EBT3 and EBT-XD. Both types of RCFs were suitable for micrometer-resolution dosimetry using CRS. With CRS both lateral and depth resolutions on RCF were improved. The PR method provided superior characteristics in dose uniformity, dose ranges, orientation dependence, and laser effect for both types of RCFs. The overall dosimetric characteristics of the RCFs determined by this technique were similar to those known by optical density scanning. The CRS with the PR method is advantageous over other the traditional scanning systems as a spatial resolution of <10 µm on RCF can be achieved with less deviations.


Assuntos
Dosimetria Fotográfica/instrumentação , Análise Espectral Raman , Calibragem , Razão Sinal-Ruído
4.
Med Phys ; 43(8): 4520, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487869

RESUMO

PURPOSE: Due to increasing demand for high-spatial resolution dosimetry, radiochromic films have been investigated as potential candidates but are often limited by the scanning system, e.g., flatbed optical scanner. In this study, Raman spectroscopy in conjunction with a microscope was selected as an alternative method for high-spatial resolution dosimetry of radiochromic film. METHODS: Unlaminated Gafchromic™ EBT3 films were irradiated with doses between 0 and 50 Gy using 6 MV x-rays of a clinical linear accelerator. Depth profiling from the surface of unlaminated film was performed to acquire the maximum Raman intensity peaks of C≡C and C=C stretching bands of diacetylene polymer. The Raman mapping technique for a region of interest (200 × 200, 30 × 30 µm(2)) was developed to reduce a large variation in a Raman spectrum produced with a sampling resolution of a few µm. The preprocessing of Raman spectra was carried out to determine a dosimetric relationship with the amount of diacetylene polymerization. RESULTS: Due to partial diacetylene polymerization upon irradiation, two Raman peaks of C=C and C≡C stretching bands were observed around 1447 and 2060 cm(-1), respectively. The maximum intensities of the two peaks were obtained by positioning a focused laser spot on the surface of unlaminated film. For the dose range of 0-50 Gy, the band heights of both C≡C and C=C peaks increase asymptotically with increasing doses and can be fit with an exponential function of two components. The relative standard deviation in Raman mapping was found to be less than ±5%. By using this technique, dose uniformity was found to be within ±2%. CONCLUSIONS: The Raman intensity for C=C and C≡C peaks increases with an increase in the amount of diacetylene polymerization due to an increase in dose. This study shows the potential of Raman spectroscopy as an alternative for absolute dosimetry verifications with a high-spatial resolution of a few µm, but these findings need to be further validated for the purpose of microdosimetry.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Alcinos , Calibragem , Carbono , Aceleradores de Partículas , Polimerização , Água , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA