Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Healthc Eng ; 2021: 1203726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659677

RESUMO

Missing data occurs in all research, especially in medical studies. Missing data is the situation in which a part of research data has not been reported. This will result in the incompatibility of the sample and the population and misguided conclusions. Missing data is usual in research, and the extent of it will determine how misinterpreted the conclusions will be. All methods of parameter estimation and prediction models are based on the assumption that the data are complete. Extensive missing data will result in false predictions and increased bias. In the present study, a novel method has been proposed for the imputation of medical missing data. The method determines what algorithm is suitable for the imputation of missing data. To do so, a multiobjective particle swarm optimization algorithm was used. The algorithm imputes the missing data in a way that if a prediction model is applied to the data, both specificity and sensitivity will be optimized. Our proposed model was evaluated using real data of gastric cancer and acute T-cell leukemia (ATLL). First, the model was then used to impute the missing data. Then, the missing data were imputed using deletion, average, expectation maximization, MICE, and missForest methods. Finally, the prediction model was applied for both imputed datasets. The accuracy of the prediction model for the first and the second imputation methods was 0.5 and 16.5, respectively. The novel imputation method was more accurate than similar algorithms like expectation maximization and MICE.


Assuntos
Algoritmos , Projetos de Pesquisa
3.
Comput Math Methods Med ; 2020: 1016284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082836

RESUMO

Gastric cancer (GC), one of the most common cancers around the world, is a multifactorial disease and there are many risk factors for this disease. Assessing the risk of GC is essential for choosing an appropriate healthcare strategy. There have been very few studies conducted on the development of risk assessment systems for GC. This study is aimed at providing a medical decision support system based on soft computing using fuzzy cognitive maps (FCMs) which will help healthcare professionals to decide on an appropriate individual healthcare strategy based on the risk level of the disease. FCMs are considered as one of the strongest artificial intelligence techniques for complex system modeling. In this system, an FCM based on Nonlinear Hebbian Learning (NHL) algorithm is used. The data used in this study are collected from the medical records of 560 patients referring to Imam Reza Hospital in Tabriz City. 27 effective features in gastric cancer were selected using the opinions of three experts. The prediction accuracy of the proposed method is 95.83%. The results show that the proposed method is more accurate than other decision-making algorithms, such as decision trees, Naïve Bayes, and ANN. From the perspective of healthcare professionals, the proposed medical decision support system is simple, comprehensive, and more effective than previous models for assessing the risk of GC and can help them to predict the risk factors for GC in the clinical setting.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Lógica Fuzzy , Neoplasias Gástricas/etiologia , Algoritmos , Inteligência Artificial , Biologia Computacional , Diagnóstico por Computador , Feminino , Humanos , Irã (Geográfico) , Masculino , Conceitos Matemáticos , Dinâmica não Linear , Medição de Risco , Fatores de Risco , Neoplasias Gástricas/diagnóstico
4.
Springerplus ; 5: 312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066344

RESUMO

Cancer is the leading cause of death in economically developed countries and the second leading cause of death in developing countries. Gastric cancers are among the most devastating and incurable forms of cancer and their treatment may be excessively complex and costly. Data mining, a technology that is used to produce analytically useful information, has been employed successfully with medical data. Although the use of traditional data mining techniques such as association rules helps to extract knowledge from large data sets, sometimes the results obtained from a data set are so large that it is a major problem. In fact, one of the disadvantages of this technique is a lot of nonsense and redundant rules due to the lack of attention to the concept and meaning of items or the samples. This paper presents a new method to discover association rules using ontology to solve the expressed problems. This paper reports a data mining based on ontology on a medical database containing clinical data on patients referring to the Imam Reza Hospital at Tabriz. The data set used in this paper is gathered from 490 random visitors to the Imam Reza Hospital at Tabriz, who had been suspicions of having gastric cancer. The proposed data mining algorithm based on ontology makes rules more intuitive, appealing and understandable, eliminates waste and useless rules, and as a minor result, significantly reduces Apriori algorithm running time. The experimental results confirm the efficiency and advantages of this algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA