Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 311: 102827, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36584601

RESUMO

Electrospinning (ES) is one of the most investigated processes for the convenient, adaptive, and scalable manufacturing of nano/micro/macro-fibers. With this technique, virgin and composite fibers may be made in different designs using a wide range of polymers (both natural and synthetic). Electrospun protein fibers (EPF) shave desirable capabilities such as biocompatibility, low toxicity, degradability, and solvolysis. However, issues with the proteins' processibility have limited their widespread utilization. This paper gives an overview of the features of protein-based biomaterials, which are already being employed and has the potential to be exploited for ES. State-of-the-art examples showcasing the usefulness of EPFs in the food and biomedical industries, including tissue engineering, wound dressings, and drug delivery, provided in the applications. The EPFs' future perspective and the challenge they pose are presented at the end. It is believed that protein and biopolymeric nanofibers will soon be manufactured on an industrial scale owing to the limitations of employing synthetic materials, as well as enormous potential of nanofibers in other fields, such as active food packaging, regenerative medicine, drug delivery, cosmetic, and filtration.


Assuntos
Nanofibras , Materiais Biocompatíveis , Engenharia Tecidual/métodos , Medicina Regenerativa/métodos , Proteínas
2.
Food Sci Nutr ; 7(8): 2471-2484, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31428335

RESUMO

Mayonnaise is a semisolid oil-in-water (O/W) emulsion which is made through the careful blending of oil, vinegar, egg yolk, and spices (especially mustard). In addition, mayonnaise traditionally contains 70%-80% oil, and egg yolk is a key ingredient contributing to its stability. Despite concerns about high cholesterol level in egg yolk, it is yet the most widely utilized emulsifying agent owing to its high emulsifying capacity. Today, the public knowledge about diet and health has been incremented, compelling the people to consume foodstuffs containing functional features. Thus, consumers, aware of the considerable influence of the diet on their health, demand nutritious and healthier food. Mayonnaise is usually cited by health-related issues due to its high cholesterol and fat content. Many researchers have tried to replace fat, as well as egg yolk completely or partially; however, low-fat mayonnaises require extra ingredients to keep the stability. In other words, each ingredient plays a specific role in textural and oxidative stability, and using alternative emulsifiers and fat replacers may affect the sensorial, textural, and antioxidant features of mayonnaise. Furthermore, mayonnaise, like other high-fat foodstuffs, is vulnerable to auto-oxidation. In addition to using fat replacers, mayonnaise is accompanied with bioactive ingredients to produce a healthy system. Therefore in this review, we gathered a quick summary of the ideas, including lowering the cholesterol and fat and using natural antioxidants, prebiotics, and probiotics in order to produce a healthy and functional mayonnaise sauce.

3.
Curr Pharm Biotechnol ; 20(13): 1074-1086, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309886

RESUMO

Nowadays, distribution and microorganism resistance against antimicrobial compounds have caused crucial food safety problems. Hence, nanotechnology and zeolite are recognized as new approaches to manage this problem due to their inherent antimicrobial activity. Different studies have confirmed antimicrobial effects of Nano particles (NPs) (metal and metal oxide) and zeolite, by using various techniques to determine antimicrobial mechanism. This review includes an overview of research with the results of studies about antimicrobial mechanisms of nanoparticles and zeolite. Many researches have shown that type, particle size and shape of NPs and zeolite are important factors showing antimicrobial effectiveness. The use of NPs and zeolite as antimicrobial components especially in food technology and medical application can be considered as prominent strategies to overcome pathogenic microorganisms. Nevertheless, further studies are required to minimize the possible toxicity of NPs in order to apply suitable alternatives for disinfectants and antibacterial agents in food applications.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Nanopartículas Metálicas/química , Zeolitas/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanotecnologia , Óxidos , Tamanho da Partícula , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA