Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 23(1): 25-42, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18800146

RESUMO

Since the discovery of leukemic stem cells (LSCs) over a decade ago, many of their critical biological properties have been elucidated, including their distinct replicative properties, cell surface phenotypes, their increased resistance to chemotherapeutic drugs and the involvement of growth-promoting chromosomal translocations. Of particular importance is their ability to transfer malignancy to non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. Furthermore, numerous studies demonstrate that acute myeloid leukemia arises from mutations at the level of stem cell, and chronic myeloid leukemia is also a stem cell disease. In this review, we will evaluate the main characteristics of LSCs elucidated in several well-documented leukemias. In addition, we will discuss points of therapeutic intervention. Promising therapeutic approaches include the targeting of key signal transduction pathways (for example, PI3K, Rac and Wnt) with small-molecule inhibitors and specific cell surface molecules (for example, CD33, CD44 and CD123), with effective cytotoxic antibodies. Also, statins, which are already widely therapeutically used for a variety of diseases, show potential in targeting LSCs. In addition, drugs that inhibit ATP-binding cassette transporter proteins are being extensively studied, as they are important in drug resistance-a frequent characteristic of LSCs. Although the specific targeting of LSCs is a relatively new field, it is a highly promising battleground that may reveal the Holy Grail of cancer therapy.


Assuntos
Leucemia/tratamento farmacológico , Leucemia/patologia , Células-Tronco Neoplásicas/patologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Leucemia/etiologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Resultado do Tratamento
2.
Leukemia ; 22(11): 2080-90, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18685611

RESUMO

A cytokine-dependent (FL5.12), drug-sensitive, p53 wild type (WT) and a doxorubicin-resistant derivative line (FL/Doxo) were used to determine the mechanisms that could result in drug resistance of early hematopoietic precursor cells. Drug resistance was associated with decreased p53 induction after doxorubicin treatment, which was due to a higher level of proteasomal degradation of p53. Dominant-negative (DN) p53 genes increased the resistance to chemotherapeutic drugs, MDM-2 and MEK inhibitors, further substantiating the role of p53 in therapeutic sensitivity. The involvement of signal transduction and apoptotic pathways was examined, as drug resistance did not appear to be due to increased drug efflux. Drug-resistant FL/Doxo cells had higher levels of activated Raf/MEK/ERK signaling and decreased induction of apoptosis when cultured in the presence of doxorubicin than drug-sensitive FL5.12 cells. Introduction of DN MEK1 increased drug sensitivity, whereas constitutively active (CA) MEK1 or conditionally active BRAF augmented resistance, documenting the importance of the Raf/MEK/ERK pathway in drug resistance. MEK inhibitors synergized with chemotherapeutic drugs to reduce the IC(50). Thus the p53 and Raf/MEK/ERK pathways play key roles in drug sensitivity. Targeting these pathways may be effective in certain drug-resistant leukemias that are WT at p53.


Assuntos
Resistência a Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Quinases raf/metabolismo , Animais , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Caspases/metabolismo , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Doxorrubicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Genes Dominantes , Células-Tronco Hematopoéticas/metabolismo , Imidazóis/farmacologia , Leupeptinas/farmacologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Quinases raf/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA