Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(7): e202300796, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38225831

RESUMO

Neryl diphosphate (C10) synthase (NDPS1), a homodimeric soluble cis-prenyltransferase from tomato, contains four disulfide bonds, including two inter-subunit S-S bonds in the N-terminal region. Mutagenesis studies demonstrated that the S-S bond formation affects not only the stability of the dimer but also the catalytic efficiency of NDPS1. Structural polymorphs in the crystal structures of NDPS1 complexed with its substrate and substrate analog were identified by employing massive data collections and hierarchical clustering analysis. Heterogeneity of the C-terminal region, including the conserved RXG motifs, was observed in addition to the polymorphs of the binding mode of the ligands. One of the RXG motifs covers the active site with an elongated random coil when the ligands are well-ordered. Conversely, the other RXG motif was located away from the active site with a helical structure. The heterogeneous C-terminal regions suggest alternating structural transitions of the RXG motifs that result in closed and open states of the active sites. Site-directed mutagenesis studies demonstrated that the conserved glycine residue cannot be replaced. We propose that the putative structural transitions of the order/disorder of N-terminal regions and the closed/open states of C-terminal regions may cooperate and be important for the catalytic mechanism of NDPS1.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Transferases/metabolismo , Domínios Proteicos , Mutagênese Sítio-Dirigida
2.
FEBS J ; 289(15): 4602-4621, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133719

RESUMO

Most cis-prenyltransferases (cPTs) use all-trans-oligoprenyl diphosphate, such as (E,E)-farnesyl diphosphate (FPP, C15 ), but scarcely accept dimethylallyl diphosphate (DMAPP, C5 ), as an allylic diphosphate primer in consecutive cis-condensations of isopentenyl diphosphate. Consequently, naturally occurring cis-1,4-polyisoprenoids contain a few trans-isoprene units at their ω-end. However, some Solanum plants have distinct cPTs that primarily use DMAPP as a primer to synthesize all-cis-oligoprenyl diphosphates, such as neryl diphosphate (NPP, C10 ). However, the mechanism underlying the allylic substrate preference of cPTs remains unclear. In this study, we determined the crystal structure of NDPS1, an NPP synthase from tomato, and investigated critical residues for primer substrate preference through structural comparisons of cPTs. Highly conserved Gly and Trp in the primer substrate-binding region of cPTs were discovered to be substituted for Ile/Leu and Phe, respectively, in DMAPP-preferring cPTs. An I106G mutant of NDPS1 exhibited a low preference for DMAPP, but a higher preference for FPP. However, an I106G/F276W mutant preferred not only DMAPP but also all-trans-oligoprenyl diphosphates, with 15-fold higher catalytic efficiency than WT. Surprisingly, the mutant synthesized longer polyisoprenoids (~C50 ). Furthermore, one of the helix domains that constitute the hydrophobic cleft for accommodating elongating prenyl chains was also demonstrated to be critical in primer substrate preference. An NDPS1 I106G/F276W mutant with a chimeric helix domain swapped with that of a medium-chain cPT synthesizing C50-60 polyisoprenoids showed over 94-fold increase in catalytic efficiency for all primer substrates tested, resulting in longer products (~C70 ). These NDPS1 mutants could be used in the enzymatic synthesis of nonnatural all-cis-polyisoprenoids.


Assuntos
Alquil e Aril Transferases , Difosfatos , Catálise , Transferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA