Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 13(6): 1849-1862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35245688

RESUMO

The gut contains the largest macrophage pool in the body, with populations of macrophages residing in the mucosa and muscularis propria of the gastrointestinal (GI) tract. Muscularis macrophages (MMs), which are located within the muscularis propria, interact with cells essential for GI function, such as interstitial cells of Cajal, enteric neurons, smooth muscle cells, enteric glia, and fibroblast-like cells, suggesting that these immune cells contribute to several aspects of GI function. This review focuses on the latest insights on the factors contributing to MM heterogeneity and the functional interaction of MMs with other cell types essential for GI function. This review integrates the latest findings on macrophages in other organs with increasing knowledge of MMs to better understand their role in a healthy and diseased gut. We describe the factors that contribute to (muscularis macrophage) MM heterogeneity, and the nature of MM interactions with cells regulating GI function. Finally, we also describe the increasing evidence suggesting a critical role of another immune cell type, the mast cell, in normal and diseased GI physiology.


Assuntos
Trato Gastrointestinal , Mastócitos , Trato Gastrointestinal/fisiologia , Homeostase , Macrófagos/metabolismo , Músculo Liso
2.
Neurogastroenterol Motil ; 33(3): e13993, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33020982

RESUMO

BACKGROUND AND AIM: Muscularis macrophages (MMs) not only mediate the innate immunity, but also functionally interact with cells important for gastrointestinal motility. The aim of this study was to determine the spatial relationship and types of contacts between the MMs and neighboring cells in the muscularis propria of human and mouse stomach, small intestine, and large intestine. METHODS: The distribution and morphology of MMs and their contacts with other cells were investigated by immunohistochemistry and transmission electron microscopy. KEY RESULTS: Immunohistochemistry showed variable shape and number of MMs according to their location in different portions of the muscle coat. By double labeling, a close association between MMs and neighboring cells, that is, neurons, smooth muscle cells, interstitial cells of Cajal (ICCs), telocytes (TCs)/PDGFRα-positive cells, was seen. Electron microscopy demonstrated that in the muscle layers of both animal species, MMs have similar ultrastructural features and have specialized cell-to-cell contacts with smooth muscle cells and TCs/PDGFRα-positive cells but not with ICCs and enteric neurons. CONCLUSION & INFERENCES: This study describes varying patterns of distribution of MMs between different regions of the gut, and reports the presence of distinct and extended cell-to-cell contacts between MMs and smooth muscle cells and between MMs and TCs/PDGFRα-positive cells. In contrast, MMs, although close to ICCs and nerve elements, did not make contact with them. These findings indicate specialized and variable roles for MMs in the modulation of gastrointestinal motility whose significance should be more closely investigated in normal and pathological conditions.


Assuntos
Mucosa Gástrica/citologia , Junções Intercelulares/ultraestrutura , Mucosa Intestinal/citologia , Macrófagos/citologia , Miócitos de Músculo Liso/citologia , Telócitos/citologia , Animais , Comunicação Celular , Sistema Nervoso Entérico , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestrutura , Humanos , Células Intersticiais de Cajal/citologia , Células Intersticiais de Cajal/metabolismo , Células Intersticiais de Cajal/ultraestrutura , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestrutura , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/ultraestrutura , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Telócitos/metabolismo , Telócitos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA