Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Physiol Behav ; 271: 114352, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714322

RESUMO

Rapid eye movement (REM) sleep plays a significant role in visuospatial learning and memory consolidation; however, its mechanism of action is unknown. Rapid eye movements (REMs), a characteristic active feature of REM sleep, is a potential correlate of neural processing for visual memory consolidation. The superior colliculus (SC) plays a central role in oculomotor control and spatial localization of objects in the visual field. We proposed that local reversible inactivation of the SC during post-learning sessions might interfere with REMs and negatively impact REM sleep associated consolidation of the visuospatial learnt task. Under gaseous anesthesia, bilateral cannulae aiming SC and electrodes for recording electrophysiological signals to classify sleep-waking were implanted. Following standard protocol, all rats were subjected to Morris water maze (MWM) training for 5 consecutive days followed by probe trial. After MWM training, on all except the probe test days, the rat SC were bilaterally infused with either vehicle (control, Group 1), Lidocaine hydrochloride a local anesthetic (Lox 2%, Group 2), or muscimol (Mus, GABA agonist, Group 3) and sleep-wakefulness recorded after day 1, 4, and post-probe learning sessions. Post-learning, compared to vehicle, Mus treated group significantly decreased REMs, phasic REM sleep, percent time spent in REM sleep and REM sleep frequency/hr. Also, during probe test, the escape latency was significantly increased, and the percentage time spent in the platform quadrant were significantly decreased in both, Mus and Lox 2% treated rats, while the number of platform location crossings was decreased in Mus treated group. The results showed that Lox 2% and Mus into SC reduced consolidation of visuospatial learning. The findings support our contention that SC mediated activation of REMs exerts a positive influence in processing and consolidation of visual learning during REM sleep. The findings explain the role of REMs during REM sleep in visual memory consolidation.

2.
Behav Brain Res ; 438: 114177, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36306944

RESUMO

The superior colliculus (SC) is associated with visual attention, spatial navigation, decision making, escape and approach responses, some of which are important for defence and survival in rodents. SC helps in initiating and controlling saccadic eye movements and gaze during wakefulness. It is also activated during rapid eye movement (REM) sleep associated rapid eye movements (REMs). To investigate the contribution of SC in sleep-wake behaviour, we have demonstrated that manipulation of SC with scopolamine, carbachol, muscimol, picrotoxin and MK-801 decreased the amount of REM sleep. We observed that scopolamine and picrotoxin as well as muscimol decreased REM sleep frequency. MK-801 decreased percent amount of REM sleep, however, neither the frequency nor the duration/episode was affected. The cholinergic and GABA-ergic modulation of SC affecting REM sleep may be involved in REM sleep associated visuo-spatial learning and memory consolidation, which however, need to be confirmed. Furthermore, the results suggest involvement of efferent from SC in modulation of sleep-waking via the brainstem sleep regulating areas.


Assuntos
Sono REM , Colículos Superiores , Ratos , Animais , Sono REM/fisiologia , Picrotoxina , Muscimol/farmacologia , Maleato de Dizocilpina , Ácido gama-Aminobutírico/fisiologia , Vigília/fisiologia , Escopolamina/farmacologia , Colinérgicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA