Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850132

RESUMO

We report the synthesis of three (3) linear triblock terpolymers, two (2) of the ABC type and one (1) of the BAC type, where A, B and C correspond to three chemically incompatible blocks such as polystyrene (PS), poly(butadiene) of exclusively (~100% vinyl-type) -1,2 microstructure (PB1,2) and poly(dimethylsiloxane) (PDMS) respectively. Living anionic polymerization enabled the synthesis of narrowly dispersed terpolymers with low average molecular weights and different composition ratios, as verified by multiple molecular characterization techniques. To evaluate their self-assembly behavior, transmission electron microscopy and small-angle X-ray scattering experiments were conducted, indicating the effect of asymmetric compositions and interactions as well as inversed segment sequence on the adopted morphologies. Furthermore, post-polymerization chemical modification reactions such as hydroboration and oxidation were carried out on the extremely low molecular weight PB1,2 in all three terpolymer samples. To justify the successful incorporation of -OH groups in the polydiene segments and the preparation of polymeric brushes, various molecular, thermal, and surface analysis measurements were carried out. The synthesis and chemical modification reactions on such triblock terpolymers are performed for the first time to the best of our knowledge and constitute a promising route to design polymers for nanotechnology applications.

2.
Molecules ; 25(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255708

RESUMO

The synthesis of two (2) novel triblock terpolymers of the ABC type and one (1) of the BAC type, where A, B and C are chemically different segments, such as polystyrene (PS), poly(butadiene) (PB1,4) and poly(dimethylsiloxane) (PDMS), is reported; moreover, their corresponding molecular and bulk characterizations were performed. Very low dimensions are evident from the characterization in bulk from transmission electron microscopy studies, verified by small-angle X-ray data, since sub-16 nm domains are evident in all three cases. The self-assembly results justify the assumptions that the high Flory-Huggins parameter, χ, even in low molecular weights, leads to significantly well-ordered structures, despite the complexity of the systems studied. Furthermore, it is the first time that a structure/properties relationship was studied for such systems in bulk, potentially leading to prominent applications in nanotechnology and nanopatterning, for as low as sub-10 nm thin-film manipulations.


Assuntos
Peso Molecular , Polimerização , Polímeros/química , Ânions/química , Microscopia Eletrônica de Transmissão , Análise Espectral , Temperatura
3.
ACS Macro Lett ; 8(3): 261-266, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35650826

RESUMO

We describe the phase behavior of a cylinder-forming block copolymer (BCP)/homopolymer blend and the generation of aligned nanopores by a combination of magnetic field alignment and selective removal of the minority-block-miscible homopolymer. Alignment is achieved by cooling through the order-disorder transition temperature (Todt) in a 6 T field. The system is a blend of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) and poly(ethylene glycol) (PEG). PEG is miscible with P4VP and partitions preferentially into the cylindrical microdomains. Calorimetry and X-ray scattering show that Todt decreases linearly with PEG concentration until the onset of macrophase separation, inferred by PEG crystallization. Beyond this point, Todt is invariant with PEG content. Increasing PEG molar mass decreases the concentration at which macrophase separation is observed. Nanopore formation is confirmed by dye uptake experiments that show a clear dependence of dye uptake on PEG content before removal. We anticipate that this strategy can be extended to other BCP/homopolymer blends to produce nanoporous materials with reliable control of pore alignment and effective pore dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA