Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; : 37028241252847, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693875

RESUMO

Raman spectroscopy is an emerging technique for rapid and nondestructive analysis of nuclear materials for forensic and nonproliferation applications as it is a powerful tool for distinguishing multiple chemical forms of materials with similar stoichiometries. Recent developments in spectroscopic software have enabled rapid data collection with high-speed Raman spectroscopic mapping capabilities. However, some uranium-rich materials are susceptible to degradation in humid air and/or laser-induced phase transformations. To mitigate environmental or measurement-related sample degradation of potential samples of interest, we have taken a systematic approach to define optimized data collection parameters for high-throughput measurements of uranyl fluoride (UO2F2), which is an important intermediate material in the nuclear fuel cycle. First, we systematically describe the influence of optical magnification (5× to 100×), laser power, and exposure time on obtained signal for identical particles of UO2F2 and find that at low laser power and exposure times, comparable signal is obtained regardless of optical magnification. Second, we ensure sample integrity during data collection, and third, collect spectroscopic maps that employ optimized parameters to reduce the time required to obtain spatially resolved spectroscopic information. Reductions of 90% and 99% in measurement times are discussed as they relate to differences in resolving spectroscopic features of particles in identical mapping areas. During this work, we found that additional data processing options were needed and thus developed a customized Python script for importing, processing, analyzing, and visualizing Raman spectroscopic map data.

2.
Chemistry ; 29(47): e202302206, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605346

RESUMO

Invited for the cover of this issue is the group of Amy Hixon at the University of Notre Dame. The image depicts the newly identified structure of a PuIV oxalate sheet compared to the historically assumed structure. Read the full text of the article at 10.1002/chem.202301164.

3.
Chemistry ; 29(47): e202301164, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37227412

RESUMO

Plutonium(IV) oxalate hexahydrate (Pu(C2 O4 )2 ⋅ 6 H2 O; PuOx) is an important intermediate in the recovery of plutonium from used nuclear fuel. Its formation by precipitation is well studied, yet its crystal structure remains unknown. Instead, the crystal structure of PuOx is assumed to be isostructural with neptunium(IV) oxalate hexahydrate (Np(C2 O4 )2 ⋅ 6 H2 O; NpOx) and uranium(IV) oxalate hexahydrate (U(C2 O4 )2 ⋅ 6 H2 O; UOx) despite the high degree of unresolved disorder that exists when determining water positions in the crystal structures of the latter two compounds. Such assumptions regarding the isostructural behavior of the actinide elements have been used to predict the structure of PuOx for use in a wide range of studies. Herein, we report the first crystal structures for PuOx and Th(C2 O4 )2 ⋅ 6 H2 O (ThOx). These data, along with new characterization of UOx and NpOx, have resulted in the full determination of the structures and resolution of the disorder around the water molecules. Specifically, we have identified the coordination of two water molecules with each metal center, which necessitates a change in oxalate coordination mode from axial to equatorial that has not been reported in the literature. The results of this work exemplify the need to revisit previous assumptions regarding fundamental actinide chemistry, which are heavily relied upon within the current nuclear field.

4.
RSC Adv ; 13(13): 8646-8656, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936834

RESUMO

Laves phase alloys possess unique thermal and electrical conduction properties, yet the factors governing phase stability in these systems remain an open question. The influence of phonons in particular has been broadly overlooked. Here, we investigate the UCo2x Ni2(1-x) chemical space using density functional theory, which offers a unique opportunity to explore the factors influencing Laves phase stability as all three primary Laves phases (C14, C15, C36) can be stabilized by changing the ratio of Co to Ni. Calculations of the thermodynamic and dynamical stability of pure UCo2 and UNi2 in each of three primary Laves phases confirm the stability of experimentally known Laves phases for UNi2 and UCo2. A decrease in bonding strength is identified in UNi2 compared to UCo2, aligned with redshifts observed in the UNi2 phonon density of states and a decoupling of the U and Ni vibrational modes. Phonon calculations of C14 UCo2 reveal dynamical instabilities. Efforts to remove the unstable mode at the Γ point in UCo2 via atomic displacements break the symmetry of the C14 phase, revealing a lower energy P2/c structure. Vibrational contributions to the free energy were calculated and did not change the thermodynamically stable Laves phase below 1000 K. The temperature-dependent free energies of single phase UCo2 and UNi2 were used to interpolate the relative stability of ternary UCo2x Ni2(1-x) in each of the three Laves phases at varying temperatures and stoichiometries. The ternary C36 phase is only predicted to be thermodynamically stable over a narrow stoichiometric range below 600 K.

5.
Inorg Chem ; 59(16): 11481-11492, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32706579

RESUMO

Single-phase ß-UO3 is synthesized by flash heating UO2(NO3)·6H2O in air to 450 °C and annealing for 60 h under the same conditions. For the first time, we report the Raman spectra of pure ß-UO3. To facilitate the assignment of Raman and infrared vibrational modes, we use density functional theory with density functional perturbation theory. By employing a novel analysis scheme that includes the mode frequencies as well as a quantitative analysis of the mode eigenvectors, we assign the observed spectral features to individual chemical modes. In particular, the density functional theory optimized structure, observed Raman spectrum, and eigenvector analysis suggest the presence of four crystallographically distinct uranyl ions, one more than has previously been suggested.

6.
Sci Rep ; 10(1): 12285, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704033

RESUMO

A NanoSIMS 50L is used to investigate uranium molecular (235U16O, 236U16O, 238U16O, 235U1H, 238U1H, 236U16O1H, and 238U16O1H) and elemental (235U, 236U, and 238U) secondary ion production during sputtering of synthetic UO2 and the NIST-610 standard to determine if: (1) the 236U16O/238U16O molecular oxide ratio performs better than the 236U/238U elemental ratio, and (2) there is co-variance between the molecular hydrides and oxides. Despite an order of magnitude greater abundance of 236U16O secondary ions (compared to 236U), the 236U16O/238U16O ratios are less accurate than the 236U/238U ratios. Further work is needed before the higher count rate of the 236U16O secondary ion can be used to obtain a better 236U/238U ratio. The second objective was undertaken because correction for the interference of 235U1H on the 236U secondary ion species typically utilizes the 238U1H/238U ratio. This becomes problematic in samples containing 239Pu, so our aim was to understand if the hydride formation rate can be constrained independently of having to measure the 238U1H. We document correlations between the hydride (238U1H and 238U16O1H) and oxide (236U16O) secondary ions, suggesting that pursuing an alternative correction regime is worthwhile.

7.
Dalton Trans ; 48(36): 13685-13698, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31468045

RESUMO

Hydrated uranyl fluoride, [(UO2F2)(H2O)]7·4H2O, is not stable at elevated water vapor pressure, undergoing a complete loss of fluorine to form a uranyl hydroxide hydrate. Powder X-ray diffraction data of the resultant uranyl hydroxide species is presented for the first time, along with Raman and infrared (IR) spectra. The new uranyl hydroxide species is structurally similar to the layered uranyl hydroxide hydrate minerals schoepite and metaschoepite, but has a significantly expanded interlayer spacing (c = 15.12 vs. 14.73 Å), suggesting that additional H2O molecules may be present between the uranyl layers. Comparison of the Raman and IR spectra of this new uranyl hydroxide hydrate and synthetic metaschoepite ([(UO2)4O(OH)6]·5H2O) suggests that the equatorial environment of the uranyl ion may differ and that H2O molecules in the new species participate in stronger hydrogen bonds. In addition, the interlayer spacing of both this new uranyl hydroxide species and synthetic metaschoepite is shown to be sensitive to the environmental humidity, contracting and re-expanding with desiccation and rehydration. Structural distinction between the new uranyl hydroxide species and synthetic metaschoepite is confirmed by a comparison of the thermal behavior; unlike metaschoepite, the new hydrate does not form α-UO2(OH)2 upon dehydration.

8.
Sci Rep ; 9(1): 10476, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324843

RESUMO

Inelastic neutron scattering (INS) is uniquely sensitive to hydrogen due to its comparatively large thermal neutron scattering cross-section (82 b). Consequently, the inclusion of water in real samples presents significant challenges to INS data analysis due directly to the scattering strength of hydrogen. Here, we investigate uranyl fluoride (UO2F2) with inelastic neutron scattering. UO2F2 is the hydrolysis product of uranium hexafluoride (UF6), and is a hygroscopic, uranyl-ion containing particulate. Raman spectral signatures are commonly used for inferential understanding of the chemical environment for the uranyl ion in UO2F2, but no direct measurement of the influence of absorbed water molecules on the overall lattice dynamics has been performed until now. To deconvolute the influence of waters on the observed INS spectra, we use density functional theory with full spectral modeling to separate lattice motion from water coupling. In particular, we present a careful and novel analysis of the Q-dependent Debye-Waller factor, allowing us to separate spectral contributions by mass, which reveals preferential water coupling to the uranyl stretching vibrations. Coupled with the detailed partial phonon densities of states calculated via DFT, we infer the probable adsorption locations of interlayer waters. We explain that a common spectral feature in Raman spectra of uranyl fluoride originates from the interaction of water molecules with the uranyl ion based on this analysis. The Debye-Waller analysis is applicable to all INS spectra and could be used to identify light element contributions in other systems.

9.
Inorg Chem ; 58(11): 7310-7323, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31099558

RESUMO

We confirm that synthetic uranyl hydroxide hydrate metaschoepite [(UO)24O(OH)6]·5H2O is unstable against dehydration under dry conditions, and we present a structural and vibrational spectroscopic study of synthetic metaschoepite and its ambient temperature dehydration product. Complementary structural (X-ray diffraction and neutron diffraction) and vibrational spectroscopic techniques (Raman spectroscopy, infrared spectroscopy, and inelastic neutron scattering) are used to probe different components of these species. Analysis of the dehydration product suggests that it contains both pentagonally coordinated and hexagonally coordinated uranyl ions, necessitating that some uranyl ions undergo a coordination change during the dehydration of pentagonally coordinated metaschoepite. Vibrational spectra of metaschoepite and its dehydration product are interpreted with power spectra generated from ab initio molecular dynamics trajectories, allowing assignment of all major features. We identify the uranyl symmetric stretching modes of the four distinct uranyl ions in synthetic metaschoepite and clarify the assignment of lower energy Raman modes in both structures. The coanalysis of experimental and computational data reveals a strong coupling between the uranyl stretching modes and hydroxide bending modes in the anhydrous structure, leading to the presence of several high-energy combination bands in the inelastic neutron scattering data.

10.
Inorg Chem ; 57(10): 5711-5715, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29745654

RESUMO

We have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novel UP formation mechanism.

11.
Phys Chem Chem Phys ; 20(15): 10384-10395, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29611564

RESUMO

The DFT+U approach, where U is the Hubbard-like on-site Coulomb interaction, has successfully been used to improve the description of transition metal oxides and other highly correlated systems, including actinides. The secret of the DFT+U approach is the breaking of d or f shell orbital degeneracy and adding an additional energetic penalty to non-integer occupation of orbitals. A prototypical test case, UO2, benefits from the +U approach whereby the bare LDA method predicts UO2 to be a ferromagnetic metal, whereas LDA+U correctly predicts UO2 to be insulating. However, the concavity of the energetic penalty in the DFT+U approach can lead to a number of convergent "metastable" electronic configurations residing above the ground state. Uranium tetrafluoride (UF4) represents a more complex analogy to UO2 in that the crystal field has lower symmetry and the unit cell contains two symmetrically distinct U atoms. We explore the metastable states in UF4 using several different methods of selecting initial orbital occupations. Two methods, a "pre-relaxation" method wherein an initial set of orbital eigenvectors is selected via the self-consistency procedure and a crystal rotation method wherein the x, y, z axes are brought into alignment with the crystal field, are explored. We show that in the case of UF4, which has non-collinearity between its crystal axes and the U atoms' crystal field potentials, the orbital occupation matrices are much more complex and should be analyzed using a novel approach. In addition to demonstrating a complex landscape of metastable electronic states, UF4 also shows significant hybridization in U-F bonding, which involves non-trivial contributions from s, p, d, and f orbitals.

12.
J Phys Chem A ; 119(49): 11900-10, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26575434

RESUMO

We report a novel production method for uranium oxyfluoride [(UO2)7F14(H2O)7]·4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl fluoride, UO2F2, through the gas phase at ambient temperatures followed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7]·4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous structure), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielastic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform restricted motion on a length scale commensurate with the O-H bond (r = 0.92 Å). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps(-1)) than their hydrogen-bonded partners (Dr = 28.7 ps(-1)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA