Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chin J Integr Med ; 30(1): 75-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340205

RESUMO

Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Suplementos Nutricionais , Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico
2.
J Food Biochem ; 46(10): e14262, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35796388

RESUMO

SARS-CoV-2 has been responsible for causing 6,218,308 deaths globally till date and has garnered worldwide attention. The lack of effective preventive and therapeutic drugs against SARS-CoV-2 has further worsened the scenario and has bolstered research in the area. The N-terminal and C-terminal RNA binding domains (NTD and CTD) of SARS-CoV-2 nucleocapsid protein represent attractive therapeutic drug targets. Naturally occurring compounds are an excellent source of novel drug candidates due to their structural diversity and safety. Ten major bioactive compounds were identified in ethanolic extract (s) of Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare, and Petroselinum crispum using HPLC and their cytotoxic potential was determined against cancer and normal cell lines by MTT assay to ascertain their biological activity in vitro. To evaluate their antiviral potential, the binding efficacy to NTD and CTD of SARS-CoV-2 nucleocapsid protein was determined using in silico biology tools. In silico assessment of the phytocomponents revealed that most of the phytoconstituents displayed a druglike character with no predicted toxicity. Binding affinities were in the order apigenin > catechin > apiin toward SARS-CoV-2 nucleocapsid NTD. Toward nucleocapsid CTD, the affinity decreased as apigenin > cinnamic acid > catechin. Remdesivir displayed lesser affinity with NTD and CTD of SARS-CoV-2 nucleocapsid proteins than any of the studied phytoconstituents. Molecular dynamics (MD) simulation results revealed that throughout the 100 ns simulation, SARS-CoV-2 nucleocapsid protein NTD-apigenin complex displayed greater stability than SARS-CoV-2 nucleocapsid protein NTD-cinnamic acid complex. Hence, apigenin, catechin, apiin and cinnamic acid might prove as effective prophylactic and therapeutic candidates against SARS-CoV-2, if examined further in vitro and in vivo. PRACTICAL APPLICATIONS: Ten major bioactive compounds were identified in the extract(s) of four medicinally important plants viz. Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare and Petroselinum crispum using HPLC and their biological activity was also evaluated against cancer and normal cell lines. Interestingly, while all extract(s) wielded significant cytotoxicity against cancer cells, no significant toxicity was found against normal cells. The outcome of the results prompted evaluation of the antiviral potential of the ten bioactive compounds using in silico biology tools. The present study emphasizes on the application of computational approaches to understand the binding interaction and efficacy of the ten bioactive compounds from the above plants with SARS-CoV-2 nucleocapsid protein N-terminal and C-terminal RNA binding domains in preventing and/or treating COVID-19 using in silico tools. Druglikeness and toxicity profiles of the compounds were carried out to check the therapeutic application of the components. Additionally, molecular dynamics (MD) simulation was performed to check the stability of ligand-protein complexes. The results provided useful insights into the structural binding interaction(s) that can be exploited for the further development of potential antiviral agents targeting SARS-CoV-2 especially since no specific therapy is still available to combat the rapidly evolving virus and the existing treatment is more or less symptomatic which makes search for novel antiviral agents all the more necessary and crucial.


Assuntos
Tratamento Farmacológico da COVID-19 , Catequina , Laurus , Origanum , Antivirais/química , Antivirais/farmacologia , Apigenina , Cinamatos , Cinnamomum zeylanicum/metabolismo , Suplementos Nutricionais , Laurus/metabolismo , Ligantes , Petroselinum/metabolismo , SARS-CoV-2
3.
J Biomol Struct Dyn ; 40(20): 9648-9700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34243689

RESUMO

There is currently a dearth of specific therapies to treat respiratory infections caused by the three related species of coronaviruses viz. SARS-CoV-2, SARS-CoV and MERS-CoV. Prevention from disease is currently the safest and most convenient alternative available. The present study aimed to evaluate the preventive and therapeutic effect of fifteen phytoconstituents from medicinal plants of Ayurveda against coronaviruses by in silico screening. All the phytoconstituents exhibited rapid GI absorption and bioavailability and most of them had no toxicity versus reference drug chloroquine. BAS analyses revealed that most of the phytocomponents had favorable bioactivity scores towards biological target proteins. Principal component analysis revealed that most of the phytoconstituents fell close to chloroquine in 3D projection of chemical space. Affinity of phytoconstituents towards SARS-CoV-2 spike protein-human ACE2 complex decreased as isomeldenin > tinosporaside > EGCG whereas in case of unbound ACE2, the strength of binding followed the order isomeldenin > tinosporaside > ellagic acid. Towards SARS-CoV-2 main and papain-like proteases, the affinity decreased as isomeldenin > EGCG > tinosporaside and EGCG > tinosporaside > isomeldenin, respectively. Most phytoconstituents displayed significant binding kinetics to the selected protein targets than chloroquine. SAR analysis revealed that isomeldenin, tinosporaside, EGCG and ellagic acid bind to viral spike glycoproteins via H-bond, Pi-Pi, Pi-sigma and Pi-alkyl type interactions. Molecular dynamics simulation of isomeldenin and EGCG with SARS-CoV and SARS-CoV-2 spike glycoproteins exhibited low deviations throughout the 100 ns simulation indicating good stability and compactness of the protein-ligand complexes. Thus, the above four phytoconstituents have the potential to emerge as prophylactic and therapeutic agents against coronaviruses if investigated further in vitro and in vivo.


Assuntos
Antivirais , Ayurveda , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Cloroquina/metabolismo , COVID-19 , Ácido Elágico/metabolismo , Glicoproteínas/metabolismo , Agentes de Imunomodulação , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos
4.
Infect Disord Drug Targets ; 21(3): 416-428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32603287

RESUMO

BACKGROUND: In recent years, great progress has been made in reducing the high level of malaria suffering worldwide. There is a great need to evaluate drug resistance reversers and consider new medicines against malaria. There are many approaches to the development of antimalarial drugs. Specific concerns must be taken into account in these approaches, in particular the requirement for inexpensive and simple new therapies and the need to limit drug discovery expenses. Important ongoing efforts are the optimisation of treatment with available medications, including the use of combination therapy, the production of analogs of known agents and the identification of natural products, the use of compounds originally developed against other diseases, the assessment of overcoming drug resistance and the consideration of new therapeutic targets. Liver and spleen are the important organs which are directly associated with malarial complications. AIM: An analysis of the Activity of Adenosine Triphosphatase, Aryl Hyrocarbon Hydroxylase Enzymes and Malondialdehyde in spleen Explant Culture. OBJECTIVE: To determine in vitro effectof Chlorquine and Picroliv on Plasmodium Berghei induced alterations in the Activity of Adenosine Triphosphatase, Aryl Hyrocarbon Hydroxylase Enzymes and Malondialdehyde in spleen Explant Culture. MATERIALS AND METHODS: 1-Histological preparation of spleen explants for paraplast embedding. 2- Biochemicalstudies (Enzymes (Atpase, ALP&GST) and the level of protein, Malondialdehyde (MDA). RESULTS: Splenomegalyis isone of the three main diagnostic parameters of malaria infection besides fever and anaemia. Many enzymes present in the liver and spleen may also be altered or liberated under different pathological conditions. Enzymes (ATPase, ALP&GST) and the level of protein, Malondialdehyde (MDA) content was found to increase in the liver and spleen explants during malarial infection. In the liver and spleen derived from parasitized CQ treated animals, the activity of all the above enzymes (ATPase, ALP&GST) and the level of protein & MDA of liver/spleen reversed towards the normal for all the 4 or 3 days of incubations. Picroliv efficacy decreased with the increment of parasitaemia and at 60% parasitaemia. CONCLUSION: Alkalinephosphatase (ALP) was found to increase with increasing parasitaemia. After the addition of Picroliv to the medium, a decrement in the activity was observed up to day 4 of culture. A similar positive effect of Picroliv was observed on the ATPase and ALP activity of spleen explants. DNA and protein contents also increased in the parasitized liver cultured in the presence of picroliv. On the contrary, in the spleen explants DNA, protein and MDA content were found to decrease after Picroliv supplementation to the culture medium.


Assuntos
Plasmodium berghei , Baço , Adenosina Trifosfatases , Animais , Cinamatos , Glicosídeos , Malondialdeído , Oxigenases de Função Mista , Extratos Vegetais , Ácido Vanílico
5.
Plant Sci ; 263: 79-88, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28818386

RESUMO

Oils and fats are stored in endosperm during seed development in the form of triacylglycerols. Three acyltransferases: glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidyl acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) are involved in the storage lipid biosynthesis and catalyze the stepwise acylation of glycerol backbone. In this study two members of GPAT gene family (JcGPAT1 and JcGPAT2) from Jatropha seeds were identified and characterized. Sequence analysis suggested that JcGPAT1 and JcGPAT2 are homologous to Arabidopsis acyltransferase-1 (ATS1) and AtGPAT9 respectively. The sub-cellular localization studies of these two GPATs showed that JcGPAT1 localizes into plastid whereas JcGPAT2 localizes in to endoplasmic reticulum. JcGPAT1 and JcGPAT2 expressed throughout the seed development with higher expression in fully matured seed compared to immature seed. The transcript levels of JcGPAT2 were higher in comparison to JcGPAT1 in different developmental stages of seed. Over-expression of JcGPAT1 and JcGPAT2 under constitutive and seed specific promoters in Arabidopsis thaliana increased total oil content. Transgenic seeds of JcGPAT2-OE lines accumulated 43-60% more oil than control seeds whereas seeds of Arabidopsis lines over-expressing plastidial GPAT lead to only 13-20% increase in oil content. Functional characterization of GPAT homologues of Jatropha in Arabidopsis suggested that these are involved in oil biosynthesis but might have specific roles in Jatropha.


Assuntos
Aciltransferases/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Jatropha/genética , Aciltransferases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Diacilglicerol O-Aciltransferase/genética , Expressão Gênica , Jatropha/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo
6.
Parasitol Res ; 116(1): 21-33, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27774576

RESUMO

Tapeworms (cestodes) are segmented flatworms responsible for causing diseases that may prove fatal and difficult to treat in the absence of proper treatment and efficient drugs. Neurocysticercosis (NCC) is a common parasitic infection of the central nervous system and a major contributor to epilepsy caused by the metacestode (larva) of the human tapeworm Taenia solium, characterized by a range of pathological symptoms including epileptic seizures, headaches, and hydrocephalus. Cysticercosis is considered as a "biological imprint" of the socioeconomic development of a community in general and a country in particular. It is the single most common cause of epilepsy in the resource-poor endemic regions of the world, including most of South and Central America, India, Southeast Asia, China, and sub-Saharan Africa. A vast degree of variation in the neuropathology and clinical symptoms of NCC often makes it difficult to diagnose and manage. To add to it, emerging drug resistance to known anti-parasitic agents, together with the inability of these agents to prevent re-infection and relapse, further complicates the disease scenario. The aim of the current review was to provide the latest update on NCC with special emphasis on the Indian scenario, along with current and novel methods of diagnosis as well as scope of development for novel detection techniques, novel targets for drug development, and therapeutic interventions, as well as future challenges.


Assuntos
Neurocisticercose/complicações , Neurocisticercose/terapia , Animais , Humanos , Índia , Neurocisticercose/diagnóstico , Neurocisticercose/tratamento farmacológico , Taenia solium/fisiologia
7.
Phytochemistry ; 96: 37-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24125179

RESUMO

The increasing consumption of fossil fuels and petroleum products is leading to their rapid depletion and is a matter of concern around the globe. Substitutes of fossil fuels are required to sustain the pace of economic development. In this context, oil from the non food crops (biofuel) has shown potential to substitute fossil fuels. Jatropha curcas is an excellent shrub spread and naturalized across the globe. Its oil contains a high percentage of unsaturated fatty acids (about 78-84% of total fatty acid content) making the oil suitable for biodiesel production. Despite its high oil content, it has been poorly studied in terms of important enzymes/genes responsible for oil biosynthesis. Here, we describe the isolation of the full length cDNA clone of JcDGAT1, a key enzyme involved in oil biosynthesis, from J. curcas seeds and manipulation of oil content and composition in transgenic Arabidopsis plants by its expression. Transcript analysis of JcDGAT1 reveals a gradual increase from early seed development to its maturation. Homozygous transgenic Arabidopsis lines expressing JcDGAT1 both under CaMV35S promoter and a seed specific promoter show an enhanced level of total oil content (up by 30-41%) in seeds but do not show any phenotypic differences. In addition, our studies also show alterations in the oil composition through JcDGAT1 expression. While the levels of saturated FAs such as palmitate and stearate in the oil do not change, there is significant reproducible decrease in the levels of oleic acid and a concomitant increase in levels of linolenic acid both under the CaMV35S promoter as well as the seed specific promoter. Our studies thus confirm that DGAT is involved in flux control in oil biosynthesis and show that JcDGAT1 could be used specifically to manipulate and improve oil content and composition in plants.


Assuntos
Arabidopsis/genética , Diacilglicerol O-Aciltransferase/metabolismo , Jatropha , Plantas Geneticamente Modificadas/metabolismo , Sementes , Sequência de Aminoácidos , Arabidopsis/metabolismo , Sequência de Bases , Genes de Plantas , Jatropha/genética , Jatropha/crescimento & desenvolvimento , Jatropha/metabolismo , Ácido Oleico/análise , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
8.
Phytochemistry ; 71(13): 1485-94, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20598721

RESUMO

Alcohol dehydrogenases play an important role during fruit ripening and aroma production. Three full-length cDNAs (MiAdh1, 2 and 3) encoding alcohol dehydrogenases were obtained from mango fruit pulp using RT-PCR approaches. All three members displayed strong homology in the coding region when compared at the protein and nucleotide levels, however showed variations in untranslated regions. Expression patterns of these ADHs were different during fruit development and ripening. MiADH1 and MiADH2 transcripts accumulated at the onset of ripening in mango fruit whereas MiADH3 accumulated during early development of fruit. Expression analysis also indicated that mango ADHs were responsive to ethylene but regulated differently by ABA. MiADH1 was induced by ABA treatment whereas MiADH2 transcript was negatively regulated by ABA. MiADH3 did not respond to ABA in ripening fruit. Differences in substrate specificity for NADH and NADPH were also observed between the three enzymes. Total ADH enzyme activity correlated positively with increased transcript levels at the initiation of ripening.


Assuntos
Álcool Desidrogenase/genética , Regulação da Expressão Gênica de Plantas , Mangifera/crescimento & desenvolvimento , Mangifera/genética , Álcool Desidrogenase/química , Álcool Desidrogenase/classificação , Sequência de Aminoácidos , Sequência de Bases , Frutas/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Mangifera/enzimologia , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
9.
J Enzyme Inhib Med Chem ; 21(1): 43-6, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16570504

RESUMO

Pro-oxidant and anti-oxidant systems and their levels have significant roles in occlusive vascular diseases. In the present communication, we have measured the levels of some representative anti-oxidant enzymes in the blood of the patients of myocardial infarction after reperfusion and compared them to age and sex matched healthy persons. Our findings show that the activities of anti-oxidant enzymes (viz. SOD, catalase and glutathione reductase) are significantly decreased whereas there is significant increase in the levels of malonaldialdehyde (a marker of free radical-mediated damage) in the patients. The findings point out that ischemic myocardial disorders are associated with excessive free radical generation and free radical-mediated damage of lipids.


Assuntos
Catalase/sangue , Sequestradores de Radicais Livres/sangue , Glutationa Redutase/sangue , Infarto do Miocárdio/enzimologia , Superóxido Dismutase/sangue , Idoso , Radicais Livres , Humanos , Peroxidação de Lipídeos , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Reperfusão Miocárdica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA