Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(25): 11159-11167, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35701868

RESUMO

The hole-carrier transport of organic semiconductors is widely known to occur via intermolecular orbital overlaps of the highest occupied molecular orbitals (HOMO), though the effect of other occupied molecular orbitals on charge transport is rarely investigated. In this work, we first demonstrate evidence of a mixed-orbital charge transport concept in the high-performance N-shaped decyl-dinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene (C10-DNBDT-NW), where electronic couplings of the second HOMO (SHOMO) and third HOMO (THOMO) also contribute to the charge transport. We then present the molecular design of an N-shaped bis(naphtho[2',3':4,5]thieno)[2,3-b:2',3'-e]pyrazine (BNTP) π-electron system to induce more pronounced mixed-orbital charge transport by incorporating the pyrazine moiety. An effective synthetic strategy for the pyrazine-fused extended π-electron system is developed. With substituent engineering, the favorable two-dimensional herringbone assembly can be obtained with BNTP, and the decylphenyl-substituted BNTP (C10Ph-BNTP) demonstrates large electronic couplings involving the HOMO, SHOMO, and THOMO in the herringbone assembly. C10Ph-BNTP further shows enhanced mixed-orbital charge transport when the electronic couplings of all three occupied molecular orbitals are taken into consideration, which results in a high hole mobility up to 9.6 cm2 V-1 s-1 in single-crystal thin-film organic field-effect transistors. The present study provides insights into the contribution of HOMO, SHOMO, and THOMO to the mixed-orbital charge transport of organic semiconductors.

2.
J Phys Chem Lett ; 12(8): 2095-2101, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33625238

RESUMO

Operational stability, such as long-term ambient durability and bias stress stability, is one of the most significant parameters in organic thin-film transistors (OTFTs). The understanding of such stabilities has been mainly devoted to energy levels of frontier orbitals, thin-film morphologies, and device configuration involving gate dielectrics and electrodes, whereas the roles of molecular and aggregated structural features in device stability are seldom discussed. In this Letter, we report a remarkable enhancement of operational stability, especially bias stress, of n-channel single-crystal OTFTs derived from a replacement of phenyl with perfluorophenyl groups in the side chain. Because of the several-molecule-thick single-crystal nature employed for the OTFTs, the crystal-surface properties are thought to be critical, where the surface structure composed of perfluorophenyl moieties could suppress interactions between environmental species and field-induced carriers owing to increased hydrophobicity and steric protection of π-conjugated units.

3.
Commun Chem ; 4(1): 88, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-36697533

RESUMO

The interface of organic semiconductor films is of particular importance with respect to various electrochemical devices such as transistors and solar cells. In this study, we developed a new spectroscopic system, namely electrochemical attenuated total reflectance ultraviolet (EC-ATR-UV) spectroscopy, which can access the interfacial area. Ionic liquid-gated organic field-effect transistors (IL-gated OFETs) were successfully fabricated on the ATR prism. Spectral changes of the organic semiconductor were then investigated in relation to the gate voltage application and IL species, and the magnitude of spectral changes was found to correlate positively with the drain current. Additionally, the Stark shifts of not only the organic semiconductor, but also of the IL on the organic semiconductor films were detected. This new method can be applied to other electrochemical devices such as organic thin film solar cells, in which the interfacial region is crucial to their functioning.

4.
J Am Chem Soc ; 142(35): 14974-14984, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32812421

RESUMO

Toward the development of high-performance organic semiconductors (OSCs), carrier mobility is the most important requirement for next-generation OSC-based electronics. The strategy is that OSCs consisting of a highly extended π-electron core exhibit two-dimensional (2D) aggregated structures to offer effective charge transport. However, such OSCs, in general, show poor solubility in common organic solvents, resulting in limited solution processability. This is a critical trade-off between the development of OSCs with simultaneous high carrier mobility and suitable solubility. To address this issue, herein, five-membered ring-fused selenium-bridged V-shaped binaphthalene with decyl substituents (C10-DNS-VW) is developed and synthesized by an efficient method. C10-DNS-VW exhibits significantly high solubility for solution processes. Notably, C10-DNS-VW forms a one-dimensional π-stacked packing motif (1D motif) and a 2D herringbone (HB) packing motif (2D motif), depending on the crystal growth condition. On the other hand, the fabrication of thin films by means of both solution process and vacuum deposition techniques forms only the 2D HB motif. External stress tests such as heating and exposure to solvent vapor indicated that 1D and 2D motifs could be synergistically induced by the total balance of intermolecular interactions. Finally, the single-crystalline films of C10-DNS-VW by solution process exhibit carrier mobility up to 11 cm2 V-1 s-1 with suitable transistor stability under ambient conditions for more than two months, indicating that C10-DNS-VW is one of the most promising candidates for breaking the trade-off in the field of solution-processed technologies.

5.
Proc Natl Acad Sci U S A ; 117(1): 80-85, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31857386

RESUMO

Thin film transistors (TFTs) are indispensable building blocks in any electronic device and play vital roles in switching, processing, and transmitting electronic information. TFT fabrication processes inherently require the sequential deposition of metal, semiconductor, and dielectric layers and so on, which makes it difficult to achieve reliable production of highly integrated devices. The integration issues are more apparent in organic TFTs (OTFTs), particularly for solution-processed organic semiconductors due to limits on which underlayers are compatible with the printing technologies. We demonstrate a ground-breaking methodology to integrate an active, semiconducting layer of OTFTs. In this method, a solution-processed, semiconducting membrane composed of few-molecular-layer-thick single-crystal organic semiconductors is exfoliated by water as a self-standing ultrathin membrane on the water surface and then transferred directly to any given underlayer. The ultrathin, semiconducting membrane preserves its original single crystallinity, resulting in excellent electronic properties with a high mobility up to 12 [Formula: see text] The ability to achieve transfer of wafer-scale single crystals with almost no deterioration of electrical properties means the present method is scalable. The demonstrations in this study show that the present transfer method can revolutionize printed electronics and constitute a key step forward in TFT fabrication processes.

6.
Sci Rep ; 9(1): 15897, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685835

RESUMO

Building on significant developments in materials science and printing technologies, organic semiconductors (OSCs) promise an ideal platform for the production of printed electronic circuits. However, whether their unique solution-processing capability can facilitate the reliable mass manufacture of integrated circuits with reasonable areal coverage, and to what extent mass production of solution-processed electronic devices would allow substantial reductions in manufacturing costs, remain controversial. In the present study, we successfully manufactured a 4-inch (c.a. 100 mm) organic single-crystalline wafer via a simple, one-shot printing technique, on which 1,600 organic transistors were integrated and characterized. Owing to their single-crystalline nature, we were able to verify remarkably high reliability and reproducibility, with mobilities up to 10 cm2 V-1 s-1, a near-zero turn-on voltage, and excellent on-off ratio of approximately 107. This work provides a critical milestone in printed electronics, enabling industry-level manufacturing of OSC devices concomitantly with lowered manufacturing costs.

7.
Sci Adv ; 4(2): eaao5758, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29423445

RESUMO

Two-dimensional (2D) layered semiconductors are a novel class of functional materials that are an ideal platform for electronic applications, where the whole electronic states are directly modified by external stimuli adjacent to their electronic channels. Scale-up of the areal coverage while maintaining homogeneous single crystals has been the relevant challenge. We demonstrate that wafer-size single crystals composed of an organic semiconductor bimolecular layer with an excellent mobility of 10 cm2 V-1 s-1 can be successfully formed via a simple one-shot solution process. The well-controlled process to achieve organic single crystals composed of minimum molecular units realizes unprecedented low contact resistance and results in high-speed transistor operation of 20 MHz, which is twice as high as the common frequency used in near-field wireless communication. The capability of the solution process for scale-up coverage of high-mobility organic semiconductors opens up the way for novel 2D nanomaterials to realize products with large-scale integrated circuits on film-based devices.

8.
Adv Sci (Weinh) ; 5(1): 1700405, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375969

RESUMO

Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self-organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self-organized sub-nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub-nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability.

9.
Adv Mater ; 28(6): 1073-95, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26461848

RESUMO

The possibility to change the molecular assembled structures of organic and organometallic materials through mechanical stimulation is emerging as a general and powerful concept for the design of functional materials. In particular, the photophysical properties such as photoluminescence color, quantum yield, and emission lifetime of organic and organometallic fluorophores can significantly depend on the molecular packing, enabling the development of molecular materials with mechanoresponsive luminescence characteristics. Indeed, an increasing number of studies have shown in recent years that mechanical force can be utilized to change the molecular arrangement, and thereby the optical response, of luminescent molecular assemblies of π-conjugated organic or organometallic molecules. Here, the development of such mechanoresponsive luminescent (MRL) molecular assemblies consisting of organic or organometallic molecules is reviewed and emerging trends in this research field are summarized. After a brief introduction of mechanoresponsive luminescence observed in molecular assemblies, the concept of "luminescent molecular domino" is introduced, before molecular materials that show turn-on/off of photoluminescence in response to mechanical stimulation are reviewed. Mechanically stimulated multicolor changes and water-soluble MRL materials are also highlighted and approaches that combine the concept of MRL molecular assemblies with other materials types are presented in the last part of this progress report.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA