Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
medRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37398174

RESUMO

Autoimmune hepatitis (AIH) is a severe autoimmune disease, characterized by the presence of autoantibodies. However, the role of autoantibodies in the pathophysiology of AIH remains uncertain. Here, we employed Phage Immunoprecipitation-Sequencing (PhIP-Seq) to identify novel autoantibodies in AIH. Using these results, a logistic regression classifier was able to predict which patients had AIH, indicating the presence of a distinct humoral immune signature. To further investigate the autoantibodies most specific to AIH, significant peptides were identified relative to a broad array of controls (298 patients with non-alcoholic fatty liver disease (NAFLD), primary biliary cholangitis (PBC), or healthy controls). Top ranked autoreactive targets included SLA, the target of a well-recognized autoantibody in AIH, and disco interacting protein 2 homolog A (DIP2A). The autoreactive fragment of DIP2A shares a 9-amino acid stretch nearly identical to the U27 protein of HHV-6B, a virus found in the liver. In addition, antibodies against peptides derived from the leucine rich repeat N-terminal (LRRNT) domain of the relaxin family peptide receptor 1 (RXFP1) were highly enriched and specific to AIH. The enriched peptides map to a motif adjacent to the receptor binding domain, which is required for RXFP1 signaling. RXFP1 is a G protein-coupled receptor that binds relaxin-2, an anti-fibrogenic molecule shown to reduce the myofibroblastic phenotype of hepatic stellate cells. Eight of nine patients with antibodies to RXFP1 had evidence of advanced fibrosis (F3 or greater). Furthermore, serum from AIH patients positive for anti-RFXP1 antibody was able to significantly inhibit relaxin-2 signaling in the human monocytic cell line, THP1. Depletion of IgG from anti-RXFP1 positive serum abrogated this effect. These data provide supporting evidence that HHV6 plays a role in the development of AIH and point to a potential pathogenic role for anti-RXFP1 IgG in some patients. Identification of anti-RXFP1 in patient serum may enable risk stratification of AIH patients for fibrosis progression and lead to the development of novel strategies for disease intervention.

2.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288661

RESUMO

Some individuals do not return to baseline health following SARS-CoV-2 infection, leading to a condition known as long COVID. The underlying pathophysiology of long COVID remains unknown. Given that autoantibodies have been found to play a role in severity of SARS-CoV-2 infection and certain other post-COVID sequelae, their potential role in long COVID is important to investigate. Here, we apply a well-established, unbiased, proteome-wide autoantibody detection technology (T7 phage-display assay with immunoprecipitation and next-generation sequencing, PhIP-Seq) to a robustly phenotyped cohort of 121 individuals with long COVID, 64 individuals with prior COVID-19 who reported full recovery, and 57 pre-COVID controls. While a distinct autoreactive signature was detected that separated individuals with prior SARS-CoV-2 infection from those never exposed to SARS-CoV-2, we did not detect patterns of autoreactivity that separated individuals with long COVID from individuals fully recovered from COVID-19. These data suggest that there are robust alterations in autoreactive antibody profiles due to infection; however, no association of autoreactive antibodies and long COVID was apparent by this assay.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , SARS-CoV-2 , Autoanticorpos , Autoantígenos
3.
PLoS One ; 18(3): e0283576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961855

RESUMO

COVID-19 oral treatments require initiation within 5 days of symptom onset. Although antigen tests are less sensitive than RT-PCR, rapid results could facilitate entry to treatment. We collected anterior nasal swabs for BinaxNOW and RT-PCR testing and clinical data at a walk-up, community site in San Francisco, California between January and June 2022. SARS-CoV-2 genomic sequences were generated from positive samples and classified according to subtype and variant. Monte Carlo simulations were conducted to estimate the expected proportion of SARS-CoV-2 infected persons who would have been diagnosed within 5 days of symptom onset using RT-PCR versus BinaxNOW testing. Among 25,309 persons tested with BinaxNOW, 2,799 had concomitant RT-PCR. 1137/2799 (40.6%) were SARS-CoV-2 RT-PCR positive. We identified waves of predominant omicron BA.1, BA.2, BA.2.12, BA.4, and BA.5 among 720 sequenced samples. Among 1,137 RT-PCR positive samples, 788/1137 (69%) were detected by BinaxNOW; 94% (669/711) of those with Ct value <30 were detected by BinaxNOW. BinaxNOW detection was consistent over lineages. In analyses to evaluate entry to treatment, BinaxNOW detected 81.7% (361/442, 95% CI: 77-85%) of persons with COVID-19 within 5 days of symptom onset. In comparison, RT-PCR (24-hour turnaround) detected 84.2% (372/442, 95% CI: 80-87%) and RT-PCR (48-hour turnaround) detected 67.0% (296/442, 95% CI: 62-71%) of persons with COVID-19 within 5 days of symptom onset. BinaxNOW detected high viral load from anterior nasal swabs consistently across omicron sublineages emerging between January and June of 2022. Simulations support BinaxNOW as an entry point for COVID-19 treatment in a community field setting.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/genética , São Francisco/epidemiologia , Tratamento Farmacológico da COVID-19 , Testes Imunológicos , Sensibilidade e Especificidade
4.
medRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798288

RESUMO

Some individuals do not return to baseline health following SARS-CoV-2 infection, leading to a condition known as Long COVID. The underlying pathophysiology of Long COVID remains unknown. Given that autoantibodies have been found to play a role in severity of COVID infection and certain other post-COVID sequelae, their potential role in Long COVID is important to investigate. Here we apply a well-established, unbiased, proteome-wide autoantibody detection technology (PhIP-Seq) to a robustly phenotyped cohort of 121 individuals with Long COVID, 64 individuals with prior COVID-19 who reported full recovery, and 57 pre-COVID controls. While a distinct autoreactive signature was detected which separates individuals with prior COVID infection from those never exposed to COVID, we did not detect patterns of autoreactivity that separate individuals with Long COVID relative to individuals fully recovered from SARS-CoV-2 infection. These data suggest that there are robust alterations in autoreactive antibody profiles due to infection; however, no association of autoreactive antibodies and Long COVID was apparent by this assay.

5.
mSystems ; 8(1): e0067122, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507688

RESUMO

The continued emergence of SARS-CoV-2 variants is one of several factors that may cause false-negative viral PCR test results. Such tests are also susceptible to false-positive results due to trace contamination from high viral titer samples. Host immune response markers provide an orthogonal indication of infection that can mitigate these concerns when combined with direct viral detection. Here, we leverage nasopharyngeal swab RNA-seq data from patients with COVID-19, other viral acute respiratory illnesses, and nonviral conditions (n = 318) to develop support vector machine classifiers that rely on a parsimonious 2-gene host signature to diagnose COVID-19. We find that optimal classifiers include an interferon-stimulated gene that is strongly induced in COVID-19 compared with nonviral conditions, such as IFI6, and a second immune-response gene that is more strongly induced in other viral infections, such as GBP5. The IFI6+GBP5 classifier achieves an area under the receiver operating characteristic curve (AUC) greater than 0.9 when evaluated on an independent RNA-seq cohort (n = 553). We further provide proof-of-concept demonstration that the classifier can be implemented in a clinically relevant RT-qPCR assay. Finally, we show that its performance is robust across common SARS-CoV-2 variants and is unaffected by cross-contamination, demonstrating its utility for improved accuracy of COVID-19 diagnostics. IMPORTANCE In this work, we study upper respiratory tract gene expression to develop and validate a 2-gene host-based COVID-19 diagnostic classifier and then demonstrate its implementation in a clinically practical qPCR assay. We find that the host classifier has utility for mitigating false-negative results, for example due to SARS-CoV-2 variants harboring mutations at primer target sites, and for mitigating false-positive viral PCR results due to laboratory cross-contamination. Both types of error carry serious consequences of either unrecognized viral transmission or unnecessary isolation and contact tracing. This work is directly relevant to the ongoing COVID-19 pandemic given the continued emergence of viral variants and the continued challenges of false-positive PCR assays. It also suggests the feasibility of pan-respiratory virus host-based diagnostics that would have value in congregate settings, such as hospitals and nursing homes, where unrecognized respiratory viral transmission is of particular concern.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Pandemias , Sensibilidade e Especificidade
6.
J Allergy Clin Immunol ; 151(4): 926-930.e2, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36509151

RESUMO

BACKGROUND: Autoantibodies against type I IFNs occur in approximately 10% of adults with life-threatening coronavirus disease 2019 (COVID-19). The frequency of anti-IFN autoantibodies in children with severe sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is unknown. OBJECTIVE: We quantified anti-type I IFN autoantibodies in a multicenter cohort of children with severe COVID-19, multisystem inflammatory syndrome in children (MIS-C), and mild SARS-CoV-2 infections. METHODS: Circulating anti-IFN-α2 antibodies were measured by a radioligand binding assay. Whole-exome sequencing, RNA sequencing, and functional studies of peripheral blood mononuclear cells were used to study any patients with levels of anti-IFN-α2 autoantibodies exceeding the assay's positive control. RESULTS: Among 168 patients with severe COVID-19, 199 with MIS-C, and 45 with mild SARS-CoV-2 infections, only 1 had high levels of anti-IFN-α2 antibodies. Anti-IFN-α2 autoantibodies were not detected in patients treated with intravenous immunoglobulin before sample collection. Whole-exome sequencing identified a missense variant in the ankyrin domain of NFKB2, encoding the p100 subunit of nuclear factor kappa-light-chain enhancer of activated B cells, aka NF-κB, essential for noncanonical NF-κB signaling. The patient's peripheral blood mononuclear cells exhibited impaired cleavage of p100 characteristic of NFKB2 haploinsufficiency, an inborn error of immunity with a high prevalence of autoimmunity. CONCLUSIONS: High levels of anti-IFN-α2 autoantibodies in children and adolescents with MIS-C, severe COVID-19, and mild SARS-CoV-2 infections are rare but can occur in patients with inborn errors of immunity.


Assuntos
COVID-19 , Interferon Tipo I , Adulto , Humanos , Criança , Adolescente , SARS-CoV-2 , Autoanticorpos , NF-kappa B , Haploinsuficiência , Leucócitos Mononucleares , Subunidade p52 de NF-kappa B
7.
J Infect Dis ; 227(2): 246-250, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089700

RESUMO

Interferon (IFN)-specific autoantibodies have been implicated in severe coronavirus disease 2019 (COVID-19) and have been proposed as a potential driver of the persistent symptoms characterizing "long COVID," a type of postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We report that only 2 of 215 participants with convalescent SARS-CoV-2 infection tested over 394 time points, including 121 people experiencing long COVID symptoms, had detectable IFN-α2 antibodies. Both had been hospitalized during the acute phase of the infection. These data suggest that persistent anti-IFN antibodies, although a potential driver of severe COVID-19, are unlikely to contribute to long COVID symptoms in the postacute phase of the infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Interferon-alfa , Síndrome de COVID-19 Pós-Aguda , Autoanticorpos , Prevalência
8.
Respir Res ; 23(1): 354, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527083

RESUMO

Auto-antibodies (Abs) to type I interferons (IFNs) are found in up to 25% of patients with severe COVID-19, and are implicated in disease pathogenesis. It has remained unknown, however, whether type I IFN auto-Abs are unique to COVID-19, or are also found in other types of severe respiratory illnesses. To address this, we studied a prospective cohort of 284 adults with acute respiratory failure due to causes other than COVID-19. We measured type I IFN auto-Abs by radio ligand binding assay and screened for respiratory viruses using clinical PCR and metagenomic sequencing. Three patients (1.1%) tested positive for type I IFN auto-Abs, and each had a different underlying clinical presentation. Of the 35 patients found to have viral infections, only one patient tested positive for type I IFN auto-Abs. Together, our data suggest that type I IFN auto-Abs are uncommon in critically ill patients with acute respiratory failure due to causes other than COVID-19.


Assuntos
COVID-19 , Interferon Tipo I , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Adulto , Autoanticorpos , Prevalência , Estudos Prospectivos , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/epidemiologia
9.
JAMA Netw Open ; 5(10): e2235844, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36215069

RESUMO

Importance: Characterizing the clinical symptoms and evolution of community-based SARS-CoV-2 infections may inform health practitioners and public health officials in a rapidly changing landscape of population immunity and viral variants. Objectives: To compare COVID-19 symptoms among people testing positive with a rapid antigen test (RAT) during the Omicron BA.1 variant period (December 1, 2021, to January 30, 2022) with the pre-Delta (January 10 to May 31, 2021) and Delta (June 1 to November 30, 2021) variant periods and to assess the duration of RAT positivity during the Omicron BA.1 surge. Design, Setting, and Participants: This cross-sectional study was conducted from January 10, 2021, to January 31, 2022, at a walk-up community COVID-19 testing site in San Francisco, California. Participants included children and adults seeking COVID-19 testing with an RAT, regardless of age, vaccine status, or symptoms. Main Outcomes and Measures: Fisher exact tests or χ2 tests were used to compare COVID-19 symptoms during the Omicron BA.1 period with the pre-Delta and Delta periods for vaccination status and age group. Among people returning for repeated testing during the Omicron period, the proportion with a positive RAT between 4 and 14 days from symptom onset or since first positive test if asymptomatic was estimated. Results: Among 63 277 persons tested (median [IQR] age, 32 [21-44] years, with 12.0% younger than 12 years; 52.0% women; and 68.5% Latinx), a total of 18 301 people (28.9%) reported symptoms, of whom 4565 (24.9%) tested positive for COVID-19. During the Omicron BA.1 period, 3032 of 7283 symptomatic participants (41.6%) tested positive, and the numbers of these reporting cough and sore throat were higher than during pre-Delta and Delta periods (cough: 2044 [67.4%] vs 546 [51.3%] of 1065 participants, P < .001 for pre-Delta, and 281 [60.0%] of 468 participants, P = .002, for Delta; sore throat: 1316 [43.4%] vs 315 [29.6%] of 1065 participants, P < .001 for pre-Delta, and 136 [29.1%] of 468 participants, P < .001, for Delta). Compared with the 1065 patients with positive test results in the pre-Delta period, congestion among the 3032 with positive results during the Omicron BA.1 period was more common (1177 [38.8%] vs 294 [27.6%] participants, P < .001), and loss of taste or smell (160 [5.3%] vs 183 [17.2%] participants, P < .001) and fever (921 [30.4%] vs 369 [34.7%] participants, P = .01) were less common. In addition, during the Omicron BA.1 period, fever was less common among the people with positive test results who had received a vaccine booster compared with those with positive test results who were unvaccinated (97 [22.5%] of 432 vs 42 [36.2%] of 116 participants, P = .003), and fever and myalgia were less common among participants who had received a booster compared with those with positive results who had received only a primary series (fever: 97 [22.5%] of 432 vs 559 [32.8%] of 1705 participants, P < .001; myalgia: 115 [26.6%] of 432 vs 580 [34.0%] of 1705 participants, P = .003). During the Omicron BA.1 period, 5 days after symptom onset, 507 of 1613 people (31.1%) with COVID-19 stated that their symptoms were similar, and 95 people (5.9%) reported worsening symptoms. Among people testing positive, 80.2% of participants who were symptomatic and retested remained positive 5 days after symptom onset. Conclusions and Relevance: In this cross-sectional study, COVID-19 upper respiratory tract symptoms were more commonly reported during the Omicron BA.1 period than during the pre-Delta and Delta periods, with differences by vaccination status. Rapid antigen test positivity remained high 5 days after symptom onset, supporting guidelines requiring a negative test to inform the length of the isolation period.


Assuntos
COVID-19 , Faringite , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Tosse , Estudos Transversais , Feminino , Febre , Humanos , Masculino , Mialgia , SARS-CoV-2
10.
Elife ; 112022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36300623

RESUMO

Phage immunoprecipitation sequencing (PhIP-seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-seq for autoantigen discovery, including our previous work (Vazquez et al., 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), and finally, mild and severe forms of COVID-19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as prodynorphin (PDYN) in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in two patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID-19, including the endosomal protein EEA1. Together, scaled PhIP-seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.


Assuntos
Doenças Autoimunes , Bacteriófagos , COVID-19 , Humanos , Autoanticorpos , Autoantígenos/metabolismo , Autoimunidade , Bacteriófagos/metabolismo , Proteínas de Homeodomínio , Imunoprecipitação , Proteoma
11.
Sci Immunol ; : eabp8966, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35857576

RESUMO

Life-threatening 'breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-ß. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population.

12.
Open Forum Infect Dis ; 9(5): ofac135, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35479304

RESUMO

We found no significant difference in cycle threshold values between vaccinated and unvaccinated persons infected with severe acute respiratory syndrome coronavirus 2 Delta, overall or stratified by symptoms. Given the substantial proportion of asymptomatic vaccine breakthrough cases with high viral levels, interventions, including masking and testing, should be considered in settings with elevated coronavirus disease 2019 transmission.

13.
Ann Intern Med ; 175(5): 682-690, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35286144

RESUMO

BACKGROUND: SARS-CoV-2 rapid antigen tests are an important public health tool. OBJECTIVE: To evaluate field performance of the BinaxNOW rapid antigen test (Abbott) compared with reverse transcriptase polymerase chain reaction (RT-PCR) for detecting infection with the Omicron variant of SARS-CoV-2. DESIGN: Cross-sectional surveillance study. SETTING: Free, walk-up, outdoor, urban community testing and vaccine site led by Unidos en Salud, serving a predominantly Latinx community highly impacted by COVID-19. PARTICIPANTS: Persons seeking COVID-19 testing in January 2022. MEASUREMENTS: Simultaneous BinaxNOW and RT-PCR from nasal, cheek, and throat swabs, including cycle threshold (Ct) measures; a lower Ct value is a surrogate for higher amounts of virus. RESULTS: Among 731 persons tested with nasal swabs, there were 296 (40.5%) positive results on RT-PCR; 98.9% were the Omicron variant. BinaxNOW detected 95.2% (95% CI, 91% to 98%) of persons who tested positive on RT-PCR with a Ct value below 30, 82.1% (CI, 77% to 87%) of those who tested positive on RT-PCR with a Ct value below 35, and 65.2% (CI, 60% to 71%) of all who were positive on RT-PCR. Among 75 persons with simultaneous nasal and cheek swabs, BinaxNOW using a cheek swab failed to detect 91% (20 of 22) of specimens that were positive on BinaxNOW with a nasal swab. Among persons with simultaneous nasal and throat swabs who were positive on RT-PCR with a Ct value below 30, 42 of 49 (85.7%) were detected by nasal BinaxNOW, 23 of 49 (46.9%) by throat BinaxNOW, and 44 of 49 (89.8%) by either. LIMITATION: Participants were a cross-sectional sample from a community-based sentinel surveillance site, precluding study of viral or symptom dynamics. CONCLUSION: BinaxNOW detected persons with high SARS-CoV-2 levels during the Omicron surge, enabling rapid responses to positive test results. Cheek or throat swabs should not replace nasal swabs. As currently recommended, high-risk persons with an initial negative BinaxNOW result should have repeated testing. PRIMARY FUNDING SOURCE: University of California, San Francisco.


Assuntos
COVID-19 , SARS-CoV-2 , Antígenos Virais/análise , COVID-19/diagnóstico , Teste para COVID-19 , Estudos Transversais , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e Especificidade
14.
bioRxiv ; 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35350199

RESUMO

Phage Immunoprecipitation-Sequencing (PhIP-Seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-Seq for autoantigen discovery, including our previous work (Vazquez et al. 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki Disease (KD), Multisystem Inflammatory Syndrome in Children (MIS-C), and finally, mild and severe forms of COVID19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as PDYN in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in 2 patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-Seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID19, including the endosomal protein EEA1. Together, scaled PhIP-Seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.

15.
J Infect Dis ; 225(11): 1909-1914, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34979030

RESUMO

The wide spectrum of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of immune responses to different spike protein versions. Here, we compare neutralization of variants of concern, including B.1.617.2 (delta) and B.1.1.529 (omicron), in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing certain spike mutations with the immunizing exposure, and exposure to multiple spike variants increases breadth of variant cross-neutralization. These findings contribute to understanding relationships between exposures and antibody responses and may inform booster vaccination strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
16.
Clin Infect Dis ; 75(1): e303-e306, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35037050

RESUMO

While SARS-CoV-2 vaccines prevent severe disease effectively, postvaccination "breakthrough" COVID-19 infections and transmission among vaccinated individuals remain ongoing concerns. We present an in-depth characterization of transmission and immunity among vaccinated individuals in a household, revealing complex dynamics and unappreciated comorbidities, including autoimmunity to type 1 interferon in the presumptive index case.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade
17.
Clin Infect Dis ; 74(1): 32-39, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33788923

RESUMO

BACKGROUND: Sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. METHODS: SARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during 22 November to 1 December, 2020, and 10-29 January 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. RESULTS: A total of 12 124 tests were performed yielding 1099 positives. From these, 928 high-quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.4% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to the "California" or "West Coast" variants (B.1.427 and B.1.429) were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.36 vs 0.29, risk ratio [RR] = 1.28; 95% confidence interval [CI]: 1.00-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.3%). CONCLUSIONS: The increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants. Summary: We observed a growing prevalence and modestly elevated attack rate for "West Coast" severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.


Assuntos
COVID-19 , SARS-CoV-2 , Genômica , Humanos , Incidência , São Francisco/epidemiologia
18.
medRxiv ; 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33688689

RESUMO

BACKGROUND: Sequencing of the SARS-CoV-2 viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. METHODS: SARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during November 22-December 2, 2020 and January 10-29, 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. RESULTS: A total of 12,124 tests were performed yielding 1,099 positives. From these, 811 high quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.9% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to "West Coast" variants were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.357 vs 0.294, RR=1.29; 95% CI:1.01-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.1%). CONCLUSIONS: The increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants; however, additional laboratory and epidemiological studies are required to better understand differences between these variants. SUMMARY: We observed a growing prevalence and elevated attack rate for "West Coast" SARS-CoV-2 variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.

19.
medRxiv ; 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34981075

RESUMO

The wide spectrum of SARS-CoV-2 variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of the immune response to different spike protein versions. Here, we compare the neutralization of variants of concern, including B.1.617.2 (Delta) and B.1.1.529 (Omicron) in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing certain spike mutations with the immunizing exposure. We also observe that exposure to multiple spike variants increases the breadth of variant cross-neutralization. These findings contribute to understanding relationships between exposures and antibody responses and may inform booster vaccination strategies. SUMMARY: This study characterizes neutralization of eight different SARS-CoV-2 variants, including Delta and Omicron, with respect to nine different prior exposures, including vaccination, booster, and infections with Delta, Epsilon, and others. Different exposures were found to confer substantially differing neutralization specificity.

20.
Carbon Balance Manag ; 12(1): 9, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28417324

RESUMO

Forest degradation is a global phenomenon and while being an important indicator and precursor to further forest loss, carbon emissions due to degradation should also be accounted for in national reporting within the frame of UN REDD+. At regional to country scales, methods have been progressively developed to detect and map forest degradation, with these based on multi-resolution optical, synthetic aperture radar (SAR) and/or LiDAR data. However, there is no one single method that can be applied to monitor forest degradation, largely due to the specific nature of the degradation type or process and the timeframe over which it is observed. The review assesses two main approaches to monitoring forest degradation: first, where detection is indicated by a change in canopy cover or proxies, and second, the quantification of loss (or gain) in above ground biomass (AGB). The discussion only considers degradation that has a visible impact on the forest canopy and is thus detectable by remote sensing. The first approach encompasses methods that characterise the type of degradation and track disturbance, detect gaps in, and fragmentation of, the forest canopy, and proxies that provide evidence of forestry activity. Progress in these topics has seen the extension of methods to higher resolution (both spatial and temporal) data to better capture the disturbance signal, distinguish degraded and intact forest, and monitor regrowth. Improvements in the reliability of mapping methods are anticipated by SAR-optical data fusion and use of very high resolution data. The second approach exploits EO sensors with known sensitivity to forest structure and biomass and discusses monitoring efforts using repeat LiDAR and SAR data. There has been progress in the capacity to discriminate forest age and growth stage using data fusion methods and LiDAR height metrics. Interferometric SAR and LiDAR have found new application in linking forest structure change to degradation in tropical forests. Estimates of AGB change have been demonstrated at national level using SAR and LiDAR-assisted approaches. Future improvements are anticipated with the availability of next generation LiDAR sensors. Improved access to relevant satellite data and best available methods are key to operational forest degradation monitoring. Countries will need to prioritise their monitoring efforts depending on the significance of the degradation, balanced against available resources. A better understanding of the drivers and impacts of degradation will help guide monitoring and restoration efforts. Ultimately we want to restore ecosystem service and function in degraded forests before the change is irreversible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA