RESUMO
Immune checkpoint inhibitors (CPIs) are associated with a number of immune-related adverse events and low response rates. We provide preclinical evidence for use of a retroviral replicating vector (RRV) selective to cancer cells, to deliver CPI agents that may circumvent such issues and increase efficacy. An RRV, RRV-scFv-PDL1, encoding a secreted single chain variable fragment targeting PD-L1 can effectively compete with PD-1 for PD-L1 occupancy. Cell binding assays showed trans-binding activity on 100% of cells in culture when infection was limited to 5% RRV-scFv-PDL1 infected tumor cells. Further, the ability of scFv PD-L1 to rescue PD-1/PD-L1 mediated immune suppression was demonstrated in a co-culture system consisting of human-derived immune cells and further demonstrated in several syngeneic mouse models including an intracranial tumor model. These tumor models showed that tumors infected with RRV-scFv-PD-L1 conferred robust and durable immune-mediated anti-tumor activity comparable or superior to systemically administered anti-PD-1 or anti PD-L1 monoclonal antibodies. Importantly, the nominal level of scFv-PD-L1 detected in serum is â¼50-150 fold less than reported for systemically administered therapeutic antibodies targeting immune checkpoints. These results support the concept that RRV-scFv-PDL1 CPI strategy may provide an improved safety and efficacy profile compared to systemic monoclonal antibodies of currently approved therapies.
RESUMO
Treatment of tumors with Toca 511, a gamma retroviral replicating vector encoding cytosine deaminase, followed by 5-fluorocytosine (5-FC) kills tumors by local production of 5-fluorouracil (5-FU). In brain tumor models, this treatment induces systemic anti-tumor immune responses and long-term immune-mediated survival. Phase 1 Toca 511 and Toca FC (extended-release 5-FC) clinical trials in patients with recurrent high-grade glioma show durable complete responses and promising survival data compared to historic controls. The work described herein served to expand on our earlier findings in two models of metastatic colorectal carcinoma (mCRC). Intravenous (i.v.) delivery of Toca 511 resulted in substantial tumor-selective uptake of vector into metastatic lesions. Subsequent treatment with 5-FC resulted in tumor shrinkage, improved survival, and immune memory against future rechallenge with the same CT26 CRC cell line. Similar results were seen in a brain metastasis model of mCRC. Of note, 5-FC treatment resulted in a significant decrease in myeloid-derived suppressor cells (MDSCs) in mCRC tumors in both the liver and brain. These results support the development of Toca 511 and Toca FC as a novel immunotherapeutic approach for patients with mCRC. A phase 1 study of i.v. Toca 511 and Toca FC in solid tumors, including mCRC, is currently underway (NCT02576665).
RESUMO
BACKGROUND: Prodrug-activator gene therapy with Toca 511, a tumor-selective retroviral replicating vector (RRV) encoding yeast cytosine deaminase, is being evaluated in recurrent high-grade glioma patients. Nonlytic retroviral infection leads to permanent integration of RRV into the cancer cell genome, converting infected cancer cell and progeny into stable vector producer cells, enabling ongoing transduction and viral persistence within tumors. Cytosine deaminase in infected tumor cells converts the antifungal prodrug 5-fluorocytosine into the anticancer drug 5-fluorouracil, mediating local tumor destruction without significant systemic adverse effects. METHODS: Here we investigated mechanisms underlying the therapeutic efficacy of this approach in orthotopic brain tumor models, employing both human glioma xenografts in immunodeficient hosts and syngeneic murine gliomas in immunocompetent hosts. RESULTS: In both models, a single injection of replicating vector followed by prodrug administration achieved long-term survival benefit. In the immunodeficient model, tumors recurred repeatedly, but bioluminescence imaging of tumors enabled tailored scheduling of multicycle prodrug administration, continued control of disease burden, and long-term survival. In the immunocompetent model, complete loss of tumor signal was observed after only 1-2 cycles of prodrug, followed by long-term survival without recurrence for >300 days despite discontinuation of prodrug. Long-term survivors rejected challenge with uninfected glioma cells, indicating immunological responses against native tumor antigens, and immune cell depletion showed a critical role for CD4+ T cells. CONCLUSION: These results support dual mechanisms of action contributing to the efficacy of RRV-mediated prodrug-activator gene therapy: long-term tumor control by prodrug conversion-mediated cytoreduction, and induction of antitumor immunity.
Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Glioma/imunologia , Glioma/terapia , Recidiva Local de Neoplasia/terapia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Citosina Desaminase/genética , Feminino , Vetores Genéticos/fisiologia , Glioma/patologia , Humanos , Camundongos , Retroviridae/fisiologia , Análise de SobrevidaRESUMO
BACKGROUND: Toca 511 (vocimagene amiretrorepvec) is a retroviral replicating vector encoding an optimized yeast cytosine deaminase (CD). Tumor-selective expression of CD converts the prodrug, 5-fluorocytosine (5-FC), into the active chemotherapeutic, 5-fluorouracil (5-FU). This therapeutic approach is being tested in a randomized phase II/III trial in recurrent glioblastoma and anaplastic astrocytoma (NCT0241416). The aim of this study was to identify the immune cell subsets contributing to antitumor immune responses following treatment with 5-FC in Toca 511-expressing gliomas in a syngeneic mouse model. METHODS: Flow cytometry was utilized to monitor and characterize the immune cell infiltrate in subcutaneous Tu-2449 gliomas in B6C3F1 mice treated with Toca 511 and 5-FC. RESULTS: Tumor-bearing animals treated with Toca 511 and 5-FC display alterations in immune cell populations within the tumor that result in antitumor immune protection. Attenuated immune subsets were exclusive to immunosuppressive cells of myeloid origin. Depletion of immunosuppressive cells temporally preceded a second event which included expansion of T cells which were polarized away from Th2 and Th17 in the CD4+ T cell compartment with concomitant expansion of interferon gamma-expressing CD8+ T cells. Immune alterations correlated with clearance of Tu-2449 subcutaneous tumors and T cell-dependent protection from future tumor challenge. CONCLUSIONS: Treatment with Toca 511 and 5-FC has a concentrated effect at the site of the tumor which causes direct tumor cell death and alterations in immune cell infiltrate, resulting in a tumor microenvironment that is more permissive to establishment of a T cell mediated antitumor immune response.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Flucitosina/uso terapêutico , Glioma/tratamento farmacológico , Glioma/imunologia , Animais , Linhagem Celular Tumoral , Citosina Desaminase , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Imunidade , Camundongos , Monócitos/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , Pró-Fármacos/uso terapêutico , Retroviridae , Linfócitos T/efeitos dos fármacosRESUMO
Tumor cells express a number of immunosuppressive molecules that can suppress anti-tumor immune responses. Efficient delivery of small interfering RNAs to treat a wide range of diseases including cancers remains a challenge. Retroviral replicating vectors (RRV) can be used to stably and selectively introduce genetic material into cancer cells. Here, we designed RRV to express shRNA (RRV-shPDL1) or microRNA30-derived shRNA (RRV-miRPDL1) using Pol II or Pol III promoters to downregulate PDL1 in human cancer cells. We also designed RRV expressing cytosine deaminase (yCD2) and miRPDL1 for potential combinatorial therapy. Among various configurations tested, we showed that RRV-miRPDL1 vectors with Pol II or Pol III promoter replicated efficiently and exhibited sustained downregulation of PDL1 protein expression by more than 75% in human cancer cell lines with high expression of PDL1. Immunologic effects of RRV-miRPDL1 were assessed by a trans-suppression lymphocyte assay. In vitro data showed downregulation of PDL1+ tumor cells restored activation of CD8+ T cells and bio-equivalency compared to anti-PDL1 antibody treatment. These results suggest RRV-miRPDL1 may be an alternative therapeutic approach to enhance anti-tumor immunity by overcoming PDL1-induced immune suppression from within cancer cells and this approach may also be applicable to other cancer targets.
RESUMO
We have recently discovered that inflammatory monocytes recruited to lymph nodes in response to vaccine-induced inflammation can function as potent negative regulators of both humoral and cell-mediated immune responses to vaccination. Monocyte depletion or migration blockade can significantly amplify both antibody titers and cellular immune responses to vaccination with several different antigens in mouse models. Thus, we hypothesized that the use of small molecule CCR2 inhibitors to block monocyte migration into lymph nodes may represent a broadly effective means of amplifying vaccine immunity. To address this question, the role of CCR2 in monocyte recruitment to vaccine draining lymph nodes was initially explored in CCR2-/- mice. Next, a small molecule antagonist of CCR2 (RS102895) was evaluated in mouse vaccination models. Initial studies revealed that a single intraperitoneal dose of RS102895 failed to effectively block monocyte recruitment following vaccination. Pharmacokinetic analysis of RS102895 revealed a short half-life (approximately 1h), and suggested that a multi-dose treatment regimen would be more effective. We found that administration of RS102895 every 6 h resulted in consistent plasma levels of 20 ng/ml or greater, which effectively blocked monocyte migration to lymph nodes following vaccination. Moreover, administration of RS102895 with concurrent vaccination markedly enhanced vaccine responses following immunization against the influenza antigen HA1. We concluded that administration of small molecule CCR2 antagonists such as RS102895 in the immediate post-vaccine period could be used as a novel means of significantly enhancing vaccine immunity.
Assuntos
Benzoxazinas/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Monócitos/efeitos dos fármacos , Piperidinas/administração & dosagem , Receptores CCR2/antagonistas & inibidores , Animais , Movimento Celular/efeitos dos fármacos , Cálculos da Dosagem de Medicamento , Meia-Vida , Humanos , Imunidade Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Modelos Animais , Monócitos/imunologia , Receptores CCR2/genéticaRESUMO
Vaccine adjuvant-induced inflammation augments vaccine immunity in part by recruiting APCs to vaccine draining lymph nodes (LNs). However, the role of one APC subtype, inflammatory monocytes, in regulating vaccine immunity in healthy animals has not been fully examined in detail. Therefore, vaccine-mediated monocyte recruitment and subsequent immune responses were investigated using murine vaccination models and in vitro assays. Recruitment of inflammatory monocytes to vaccine draining LNs was rapid and mediated primarily by local production of MCP-1, as revealed by studies in MCP-1(-/-) mice. Interrupting monocyte recruitment to LNs by either transient monocyte depletion or monocyte migration blockade led to marked amplification of both cellular and humoral immune responses to vaccination. These results were most consistent with the idea that rapidly mobilized inflammatory monocytes were actually suppressing vaccine responses. The suppressive nature of vaccine-elicited monocytes was confirmed using in vitro cocultures of murine monocytes and T cells. Furthermore, it was determined that inflammatory monocytes suppressed T cell responses by sequestering cysteine, as cysteine supplementation in vitro and in vivo appreciably augmented vaccine responses. These findings indicated, therefore, that vaccination-elicited inflammation, although necessary for effective immunity, also generated potent counter-regulatory immune responses that were mediated primarily by inflammatory monocytes. Therefore, interrupting monocyte-mediated vaccine counterregulatory responses may serve as an effective new strategy for broadly amplifying vaccine immunity.
Assuntos
Vacinas Anticâncer/antagonistas & inibidores , Vacinas Anticâncer/imunologia , Tolerância Imunológica/imunologia , Monócitos/imunologia , Monócitos/patologia , Vacinas de DNA/antagonistas & inibidores , Vacinas de DNA/imunologia , Animais , Vacinas Anticâncer/administração & dosagem , Cátions , Linhagem Celular Tumoral , Inibição de Migração Celular/genética , Inibição de Migração Celular/imunologia , Cisteína/administração & dosagem , Tolerância Imunológica/genética , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Monócitos/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/deficiência , Receptores CCR2/genética , Vacinas de DNA/administração & dosagemRESUMO
CONTEXT: There have been no animal studies of the health effects of repeated inhalation of mixtures representing downwind pollution from coal combustion. Environmental exposures typically follow atmospheric processing and mixing with pollutants from other sources. OBJECTIVE: This was the fourth study by the National Environmental Respiratory Center to create a database for responses of animal models to combustion-derived pollutant mixtures, to identify causal pollutants-regardless of source. METHODS: F344 and SHR rats and A/J, C57BL/6, and BALB/c mice were exposed 6 h/day 7 days/week for 1 week to 6 months to three concentrations of a mixture simulating key components of "downwind" coal combustion emissions, to the highest concentration filtered to remove particulate matter (PM), or to clean air. Emissions from low-sulfur subbituminous coal were modified to create a mixture recommended by an expert workshop. Sulfur dioxide, nitrogen oxides, and PM were the dominant components. Nonanimal-derived PM mass concentrations of nominally 0, 100, 300, and 1000 µg/m(3) were mostly partially neutralized sulfate. RESULTS: Only 17 of 270 species-gender-time-outcome comparisons were significantly affected by exposure; some models showed no effects. There was strong evidence that PM participated meaningfully in only three responses. CONCLUSION: On a total mass or PM mass basis, this mixture was less toxic overall than diesel and gasoline exhausts or wood smoke. The largely sulfate PM contributed to few effects and was the sole cause of none. The study did not allow identification of causal pollutants, but the potential role of NOx in some effects is suggested by the literature.
Assuntos
Poluentes Atmosféricos/toxicidade , Carvão Mineral/análise , Poluentes Atmosféricos/química , Animais , Relação Dose-Resposta a Droga , Exposição Ambiental/análise , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxidos de Nitrogênio/administração & dosagem , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/toxicidade , Material Particulado/administração & dosagem , Material Particulado/química , Material Particulado/toxicidade , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos SHR , Dióxido de Enxofre/administração & dosagem , Dióxido de Enxofre/química , Dióxido de Enxofre/toxicidade , Fatores de Tempo , VentoRESUMO
The development of a new, less invasive, and more rapidly implemented method of quantifying endothelial cell density in tumors could facilitate experimental and clinical studies of angiogenesis. Therefore, we evaluated the utility of tumor fine needle aspiration (FNA) coupled with flow cytometry for assessment of tumor angiogenesis. Samples were obtained from cutaneous tumors of mice using FNA, then immunostained and assessed by flow cytometry to determine the number of CD31(+) endothelial cells. Results of the FNA/flow cytometry technique were compared with quantification of tumor microvessel density using immunohistochemistry. The ability of the FNA/cytometry technique to quantify the effects of anti-angiogenic therapy and to monitor changes in tumor angiogenesis over time in individual tumors was also determined. We found that endothelial cell percentages determined in tumor tissue aspirates by flow cytometry correlated well with the percentages of endothelial cells determined in whole tumor digests by flow cytometry and with tumor microvessel density measurements by immunohistochemistry. Moreover, we found that repeated FNA sampling of tumors did not induce endothelial cell changes. Interestingly, by employing repeated FNA sampling of the same tumors we were able to observe a sudden and marked decline in tumor angiogenesis triggered when tumors reached a certain size. Thus, we conclude that the FNA/flow cytometry technique is an efficient, reproducible, and relatively non-invasive method of rapidly assessing tumor angiogenesis, which could be readily applied to evaluation of tumor angiogenesis in clinical settings in humans.
Assuntos
Biópsia por Agulha Fina/métodos , Citometria de Fluxo/métodos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/diagnóstico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Imuno-Histoquímica , Camundongos , Microvasos/efeitos dos fármacos , Microvasos/patologia , Neovascularização Patológica/tratamento farmacológico , Fatores de TempoRESUMO
Carbon monoxide (CO) confers anti-inflammatory protection in rodent models of lung injury when applied at low concentration. Translation of these findings to clinical therapies for pulmonary inflammation requires validation in higher mammals. We have evaluated the efficacy of inhaled CO in reducing LPS-induced lung inflammation in cynomolgus macaques. LPS inhalation resulted in profound neutrophil influx and moderate increases in airway lymphocytes, which returned to baseline levels within 2 wk following exposure. CO exposure (500 ppm, 6 h) following LPS inhalation decreased TNF-α release in bronchoalveolar lavage fluid but did not affect IL-6 or IL-8 release. Lower concentrations of CO (250 ppm, 6 h) did not reduce pulmonary neutrophilia. Pretreatment with budesonide, a currently used inhaled corticosteroid, decreased LPS-induced expression of TNF-α, IL-6, and IL-8, and reduced LPS-induced neutrophilia by â¼84%. In comparison, CO inhalation (500 ppm, for 6 h after LPS exposure) reduced neutrophilia by â¼67%. Thus, inhaled CO was nearly as efficacious as pretreatment with an inhaled corticosteroid at reducing airway neutrophil influx in cynomolgus macaques. However, the therapeutic efficacy of CO required relatively high doses (500 ppm) that resulted in high carboxyhemoglobin (COHb) levels (>30%). Lower CO concentrations (250 ppm), associated with anti-inflammatory protection in rodents, were ineffective in cynomolgus macaques and also yielded relatively high COHb levels. These studies highlight the complexity of interspecies variation of dose-response relationships of CO to COHb levels and to the anti-inflammatory functions of CO. The findings of this study warrant further investigations for assessing the therapeutic application of CO in nonhuman primate models of tissue injury and in human diseases. The study also suggests that akin to many new therapies in human diseases, the translation of CO therapy to human disease will require additional extensive and rigorous proof-of-concept studies in humans in the future.
Assuntos
Administração por Inalação , Monóxido de Carbono , Modelos Animais de Doenças , Pneumonia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , Budesonida/farmacologia , Budesonida/uso terapêutico , Monóxido de Carbono/administração & dosagem , Monóxido de Carbono/uso terapêutico , Humanos , Interleucina-6/imunologia , Interleucina-8/imunologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macaca fascicularis , Masculino , Neutrófilos/imunologia , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
In these studies the immunotoxicity of arsenic trioxide (ATO, As(2)O(3)) was evaluated in mice following 14 days of inhalation exposures (nose only, 3 h per day) at concentrations of 50 microg/m(3) and 1 mg/m(3). A biodistribution analysis performed immediately after inhalation exposures revealed highest levels of arsenic in the kidneys, bladder, liver, and lung. Spleen cell levels were comparable to those found in the blood, with the highest concentration of arsenic detected in the spleen being 150 microg/g tissue following the 1 mg/m(3) exposures. No spleen cell cytotoxicity was observed at either of the two exposure levels. There were no changes in spleen cell surface marker expression for B cells, T cells, macrophages, and natural killer (NK) cells. There were also no changes detected in the B cell (LPS-stimulated) and T cell (Con A-stimulated) proliferative responses of spleen cells, and no changes were found in the NK-mediated lysis of Yac-1 target cells. The primary T-dependent antibody response was, however, found to be highly susceptible to ATO suppression. Both the 50 microg/m(3) and 1 mg/m(3) exposures produced greater than 70% suppression of the humoral immune response to sheep red blood cells. Thus, the primary finding of this study is that the T-dependent humoral immune response is extremely sensitive to suppression by ATO and assessment of humoral immune responses should be considered in evaluating the health effects of arsenic containing agents.
Assuntos
Arsenicais/farmacocinética , Imunidade Celular/efeitos dos fármacos , Óxidos/farmacocinética , Óxidos/toxicidade , Aerossóis , Animais , Formação de Anticorpos/efeitos dos fármacos , Arsênio/metabolismo , Trióxido de Arsênio , Arsenicais/administração & dosagem , Técnica de Placa Hemolítica , Imunossupressores/toxicidade , Indicadores e Reagentes , Exposição por Inalação , Células Matadoras Naturais/efeitos dos fármacos , Pulmão/metabolismo , Contagem de Linfócitos , Subpopulações de Linfócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitógenos/farmacologia , Mitose/efeitos dos fármacos , Óxidos/administração & dosagem , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Baço/citologia , Baço/imunologia , Distribuição TecidualRESUMO
Particulate matter less than 10 microm (PM10) has been shown to be associated with aggravation of asthma and respiratory and cardiopulmonary morbidity. There is also great interest in the potential health effects of PM2.5. Particulate matter (PM) varies in composition both spatially and temporally depending on the source, location and seasonal condition. El Paso County which lies in the Paso del Norte airshed is a unique location to study ambient air pollution due to three major points: the geological land formation, the relatively large population and the various sources of PM. In this study, dichotomous filters were collected from various sites in El Paso County every 7 days for a period of 1 year. The sampling sites were both distant and near border crossings, which are near heavily populated areas with high traffic volume. Fine (PM2.5) and Coarse (PM10-2.5) PM filter samples were extracted using dichloromethane and were assessed for biologic activity and polycyclic aromatic (PAH) content. Three sets of marker genes human BEAS2B bronchial epithelial cells were utilized to assess the effects of airborne PAHs on biologic activities associated with specific biological pathways associated with airway diseases. These pathways included in inflammatory cytokine production (IL-6, IL-8), oxidative stress (HMOX-1, NQO-1, ALDH3A1, AKR1C1), and aryl hydrocarbon receptor (AhR)-dependent signaling (CYP1A1). Results demonstrated interesting temporal and spatial patterns of gene induction for all pathways, particularly those associated with oxidative stress, and significant differences in the PAHs detected in the PM10-2.5 and PM2.5 fractions. Temporally, the greatest effects on gene induction were observed in winter months, which appeared to correlate with inversions that are common in the air basin. Spatially, the greatest gene expression increases were seen in extracts collected from the central most areas of El Paso which are also closest to highways and border crossings.
Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Brônquios/citologia , Brônquios/efeitos dos fármacos , Linhagem Celular , Citocromo P-450 CYP1A1/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Monitoramento Ambiental/métodos , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , México , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Estações do Ano , TexasRESUMO
The tumor suppressor protein p53 is a transcription factor that regulates apoptotic responses produced by genotoxic agents. Previous studies have reported that 7,12-dimethylbenz[a]anthracene (DMBA)-induced bone marrow toxicity is p53-dependent in vivo. Our laboratory has shown that DMBA-induced splenic immunosuppression is CYP1B1- and microsomal epoxide hydrolase (mEH)-dependent, demonstrating that the DMBA-3,4-dihydrodiol-1,2-epoxide metabolite (DMBA-DE) is probably responsible for DMBA-induced immunosuppression. DMBA-DE is known to bind to DNA leading to strand breaks. Therefore, we postulated that a p53 pathway is required for DBMA-induced immunosuppression. In the present studies, our data show that activated p53 accumulated in the nuclei of spleen cells in WT and AhR-null mice after DMBA treatment, but not in CYP1B1-null or mEH-null mice. These results suggest that DMBA activates p53 in a CYP1B1- and mEH-dependent manner in vivo but is not AhR-dependent. Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein (ATR) are sensors for DNA damage that signal p53 activation. Increased ATM, phospho-ATM (Ser(1987)), and ATR levels were observed after DMBA treatment in WT, p53-null, and AhR-null mice but not in CYP1B1-null or mEH-null mice. Therefore, ATM and ATR seem to act upstream of p53 as sensors of DNA damage. Ex vivo immune function studies demonstrated that DMBA-induced splenic immunosuppression is p53-dependent at doses of DMBA that produce immunosuppression in the absence of cytotoxicity. High-dose DMBA cytotoxicity may be associated with p53-independent pathways. This study provides new insights into the requirement of genotoxicity for DMBA-induced immunosuppression in vivo and highlights the roles of ATM/ATR in signaling p53.
Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Sistema Imunitário/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/fisiologiaRESUMO
Inhalation of multiwalled carbon nanotubes (MWCNTs) at particle concentrations ranging from 0.3 to 5 mg/m3 did not result in significant lung inflammation or tissue damage, but caused systemic immune function alterations. C57BL/6 adult (10- to 12-week) male mice were exposed by whole-body inhalation to control air or 0.3, 1, or 5 mg/m3 respirable aggregates of MWCNTs for 7 or 14 days (6 h/day). Histopathology of lungs from exposed animals showed alveolar macrophages containing black particles; however, there was no inflammation or tissue damage observed. Bronchial alveolar lavage fluid also demonstrated particle-laden macrophages; however, white blood cell counts were not increased compared to controls. MWCNT exposures to 0.3 mg/m3 and higher particle concentrations caused nonmonotonic systemic immunosuppression after 14 days but not after 7 days. Immunosuppression was characterized by reduced T-cell-dependent antibody response to sheep erythrocytes as well as T-cell proliferative ability in presence of mitogen, Concanavalin A. Assessment of nonspecific natural killer (NK) cell activity showed that animals exposed to 1 mg/m(3) had decreased NK cell function. Gene expression analysis of selected cytokines and an indicator of oxidative stress were assessed in lung tissue and spleen. No changes in gene expression were observed in lung; however, interleukin-10 (IL-10) and NAD(P)H oxidoreductase 1 mRNA levels were increased in spleen.
Assuntos
Sistema Imunitário/efeitos dos fármacos , Exposição por Inalação , Pulmão/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Linfócitos T/efeitos dos fármacos , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Contagem de Leucócitos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona) , NADPH Desidrogenase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , RNA Mensageiro/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Fatores de TempoRESUMO
Microsomal epoxide hydrolase (mEH, EPHX1) is involved in the metabolism of chemicals to generate dihydrodiol intermediates in the presence of the cytochrome P450. We have previously shown that 7,12-dimethylbenz[a]anthracene (DMBA) can suppress both cell-mediated and humoral immune responses in wild-type (WT) C57BL/6N mice but not in CYP1B1 null mice. In the present studies, we hypothesized the critical metabolite responsible for DMBA-induced immunotoxicity is likely to be the 3,4-dihydrodiol-1,2-epoxide metabolite of DMBA, which requires mEH for formation. Mice were gavaged orally with DMBA (0, 17, 50, and 150 mg/kg) once a day for 5 days. Immune function and other assays were performed on day 7. Our data showed that unlike WT mice, DMBA treatment of mEH null mice produced no alterations in the body weight, spleen weight, or spleen cellularity. Similarly, DMBA treatments did not affect the PFC response in mEH null mice. Natural killer activity was not altered by DMBA treatment in mEH null mice. T-cell mitogenesis was partially suppressed by 50 and 150 mg/kg DMBA treatments of mEH null mice, but B-cell mitogenesis was not affected. Finally, we assessed the biodistribution of DMBA in both C57BL/6N WT and mEH null mice in spleen, thymus, and liver after 24 h and 7 days oral gavage. The concentrations of DMBA in each organ were not significantly different in WT and in mEH null mice. Collectively, these results demonstrate that mEH (EPHX1 gene) is a crucial enzyme for metabolic activation of DMBA in vivo leading to immunosuppression of spleen cells.