Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
ASAIO J ; 70(2): 99-106, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37816019

RESUMO

Right ventricular failure contributes significantly to morbidity and mortality after left ventricular assist device implantation. Recent data suggest a less invasive strategy (LIS) via thoracotomy may be associated with less right ventricular failure than conventional median sternotomy (CMS). However, the impact of these approaches on load-independent right ventricular (RV) contractility and RV-pulmonary arterial (RV-PA) coupling remains uncertain. We hypothesized that the LIS approach would be associated with preserved RV contractility and improved RV-PA coupling compared with CMS. We performed a retrospective study of patients who underwent durable, centrifugal left ventricular assist device implantation and had paired hemodynamic assessments before and after implantation. RV contractility (end-systolic elastance [Ees]), RV afterload (pulmonary effective arterial elastance [Ea]), and RV-PA coupling (Ees/Ea) were determined using digitized RV pressure waveforms. Forty-two CMS and 21 LIS patients were identified. Preimplant measures of Ees, Ea, and Ees/Ea were similar between groups. After implantation, Ees declined significantly in the CMS group (0.60-0.40, p = 0.008) but not in the LIS group (0.67-0.58, p = 0.28). Coupling (Ees/Ea) was unchanged in CMS group (0.54-0.59, p = 0.80) but improved significantly in the LIS group (0.58-0.71, p = 0.008). LIS implantation techniques may better preserve RV contractility and improve RV-PA coupling compared with CMS.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Hipertensão Pulmonar , Disfunção Ventricular Direita , Humanos , Estudos Retrospectivos , Artéria Pulmonar , Ventrículos do Coração , Insuficiência Cardíaca/cirurgia
3.
Front Psychiatry ; 13: 947622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713926

RESUMO

Introduction: 3,4-methylenedioxymethamphetamine-assisted therapy (MDMA-AT) for post-traumatic stress disorder (PTSD) has demonstrated promise in multiple clinical trials. MDMA is hypothesized to facilitate the therapeutic process, in part, by decreasing fear response during fear memory processing while increasing extinction learning. The acute administration of MDMA in healthy controls modifies recruitment of brain regions involved in the hyperactive fear response in PTSD such as the amygdala, hippocampus, and insula. However, to date there have been no neuroimaging studies aimed at directly elucidating the neural impact of MDMA-AT in PTSD patients. Methods: We analyzed brain activity and connectivity via functional MRI during both rest and autobiographical memory (trauma and neutral) response before and two-months after MDMA-AT in nine veterans and first-responders with chronic PTSD of 6 months or more. Results: We hypothesized that MDMA-AT would increase amygdala-hippocampus resting-state functional connectivity, however we only found evidence of a trend in the left amygdala-left hippocampus (t = -2.91, uncorrected p = 0.0225, corrected p = 0.0901). We also found reduced activation contrast (trauma > neutral) after MDMA-AT in the cuneus. Finally, the amount of recovery from PTSD after MDMA-AT correlated with changes in four functional connections during autobiographical memory recall: the left amygdala-left posterior cingulate cortex (PCC), left amygdala-right PCC, left amygdala-left insula, and left isthmus cingulate-left posterior hippocampus. Discussion: Amygdala-insular functional connectivity is reliably implicated in PTSD and anxiety, and both regions are impacted by MDMA administration. These findings compliment previous research indicating that amygdala, hippocampus, and insula functional connectivity is a potential target of MDMA-AT, and highlights other regions of interest related to memory processes. More research is necessary to determine if these findings are specific to MDMA-AT compared to other types of treatment for PTSD. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT02102802, identifier NCT02102802.

4.
Front Psychiatry ; 10: 317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133897

RESUMO

Cue-induced craving is a significant barrier to obtaining abstinence from cocaine. Neuroimaging research has shown that cocaine cue exposure evokes elevated activity in a network of frontal-striatal brain regions involved in drug craving and drug seeking. Prior research from our laboratory has demonstrated that when targeted at the medial prefrontal cortex (mPFC), continuous theta burst stimulation (cTBS), an inhibitory form of non-invasive brain stimulation, can decrease drug cue-related activity in the striatum in cocaine users and alcohol users. However, it is known that there are individual differences in response to repetitive transcranial magnetic stimulation (rTMS), with some individuals being responders and others non-responders. There is some evidence that state-dependent effects influence response to rTMS, with baseline neural state predicting rTMS treatment outcomes. In this single-blind, active sham-controlled crossover study, we assess the striatum as a biomarker of treatment response by determining if baseline drug cue reactivity in the striatum influences striatal response to mPFC cTBS. The brain response to cocaine cues was measured in 19 cocaine-dependent individuals immediately before and after real and sham cTBS (110% resting motor threshold, 3600 total pulses). Group independent component analysis (ICA) revealed a prominent striatum network comprised of bilateral caudate, putamen, and nucleus accumbens, which was modulated by the cocaine cue reactivity task. Baseline drug cue reactivity in this striatal network was inversely related to change in striatum reactivity after real (vs. sham) cTBS treatment (ρ = -.79; p < .001; R 2 Adj = .58). Specifically, individuals with a high striatal response to cocaine cues at baseline had significantly attenuated striatal activity after real but not sham cTBS (t 9 = -3.76; p ≤ .005). These data demonstrate that the effects of mPFC cTBS on the neural circuitry of craving are not uniform and may depend on an individual's baseline frontal-striatal reactivity to cues. This underscores the importance of assessing individual variability as we develop brain stimulation treatments for addiction.

6.
Brain Stimul ; 11(4): 699-708, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29716843

RESUMO

BACKGROUND: Optimal parameters of transcutaneous auricular vagus nerve stimulation (taVNS) are still undetermined. Given the vagus nerve's role in regulating heart rate (HR), it is important to determine safety and HR effects of various taVNS parameters. OBJECTIVE: We conducted two sequential trials to systematically test the effects of various taVNS parameters on HR. METHODS: 15 healthy individuals participated in the initial two-visit, crossover exploratory trial, receiving either tragus (active) or earlobe (control) stimulation each visit. Nine stimulation blocks of varying parameters (pulse width: 100 µs, 200 µs, 500 µs; frequency: 1 Hz, 10 Hz, 25 Hz) were administered each visit. HR was recorded and analyzed for stimulation-induced changes. Using similar methods and the two best parameters from trial 1 (500µs 10 Hz and 500µs 25 Hz), 20 healthy individuals then participated in a follow-up confirmatory study. RESULTS: Trial 1- There was no overall effect of the nine conditions on HR during stimulation. However multivariate analysis revealed two parameters that significantly decreased HR during active stimulation compared to control (500µs 10 Hz and 500µs 25 Hz; p < 0.01). Additionally, active taVNS significantly attenuated overall sympathetic HR rebound (post-stimulation) compared to control (p < 0.001). Trial 2-For these two conditions, active taVNS significantly decreased HR compared to control (p = 0.02), with the strongest effects at 500µs 10 Hz (p = 0.032). CONCLUSION: These studies suggest that 60s blocks of tragus stimulation are safe, and some specific parameters modulate HR. Of the nine parameters studied, 500µs 10 Hz induced the greatest HR effects.


Assuntos
Frequência Cardíaca , Estimulação Elétrica Nervosa Transcutânea/efeitos adversos , Estimulação do Nervo Vago/efeitos adversos , Adulto , Humanos , Masculino , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervo Vago/fisiologia , Estimulação do Nervo Vago/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-29776789

RESUMO

BACKGROUND: Elevated frontal and striatal reactivity to drug cues is a transdiagnostic hallmark of substance use disorders. The goal of these experiments was to determine if it is possible to decrease frontal and striatal reactivity to drug cues in both cocaine users and heavy alcohol users through continuous theta burst stimulation (cTBS) to the left ventromedial prefrontal cortex (VMPFC). METHODS: Two single-blinded, within-subject, active sham-controlled experiments were performed wherein neural reactivity to drug/alcohol cues versus neutral cues was evaluated immediately before and after receiving real or sham cTBS (110% resting motor threshold, 3600 pulses, Fp1 location; N = 49: 25 cocaine users [experiment 1], 24 alcohol users [experiment 2]; 196 total functional magnetic resonance imaging scans). Generalized psychophysiological interaction and three-way repeated-measures analysis of variance were used to evaluate cTBS-induced changes in drug cue-associated functional connectivity between the left VMPFC and eight regions of interest: ventral striatum, left and right caudate, left and right putamen, left and right insula, and anterior cingulate cortex. RESULTS: In both experiments, there was a significant interaction between treatment (real/sham) and time (pre/post). In both experiments, cue-related functional connectivity was significantly attenuated following real cTBS versus sham cTBS. There was no significant interaction with region of interest for either experiment. CONCLUSIONS: This is the first sham-controlled investigation to demonstrate, in two populations, that VMPFC cTBS can attenuate neural reactivity to drug and alcohol cues in frontostriatal circuits. These results provide an empirical foundation for future clinical trials that may evaluate the efficacy, durability, and clinical implications of VMPFC cTBS to treat addictions.


Assuntos
Alcoolismo/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Conectoma/métodos , Corpo Estriado/fisiopatologia , Sinais (Psicologia) , Giro do Cíngulo/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Adulto , Alcoolismo/diagnóstico por imagem , Transtornos Relacionados ao Uso de Cocaína/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Placebos , Córtex Pré-Frontal/diagnóstico por imagem , Método Simples-Cego , Adulto Jovem
8.
Brain Stimul ; 11(3): 492-500, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29361441

RESUMO

BACKGROUND: Electrical stimulation of the auricular branch of the vagus nerve (ABVN) via transcutaneous auricular vagus nerve stimulation (taVNS) may influence afferent vagal networks. There have been 5 prior taVNS/fMRI studies, with inconsistent findings due to variability in stimulation targets and parameters. OBJECTIVE: We developed a taVNS/fMRI system to enable concurrent electrical stimulation and fMRI acquisition to compare the effects of taVNS in relation to control stimulation. METHODS: We enrolled 17 healthy adults in this single-blind, crossover taVNS/fMRI trial. Based on parameters shown to affect heart rate in healthy volunteers, participants received either left tragus (active) or earlobe (control) stimulation at 500 µs 25 HZ for 60 s (repeated 3 times over 6 min). Whole brain fMRI analysis was performed exploring the effect of: active stimulation, control stimulation, and the comparison. Region of interest analysis of the midbrain and brainstem was also conducted. RESULTS: Active stimulation produced significant increased BOLD signal in the contralateral postcentral gyrus, bilateral insula, frontal cortex, right operculum, and left cerebellum. Control stimulation produced BOLD signal activation in the contralateral postcentral gyrus. In the active vs. control contrast, tragus stimulation produced significantly greater BOLD increases in the right caudate, bilateral anterior cingulate, cerebellum, left prefrontal cortex, and mid-cingulate. CONCLUSION: Stimulation of the tragus activates the cerebral afferents of the vagal pathway and combined with our review of the literature suggest that taVNS is a promising form of VNS. Future taVNS/fMRI studies should systematically explore various parameters and alternative stimulation targets aimed to optimize this novel form of neuromodulation.


Assuntos
Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Estimulação Elétrica Nervosa Transcutânea/métodos , Estimulação do Nervo Vago/métodos , Adolescente , Adulto , Estudos Cross-Over , Feminino , Neuroimagem Funcional , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Nervo Vago/fisiologia , Adulto Jovem
9.
Drug Alcohol Depend ; 178: 310-317, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28686990

RESUMO

BACKGROUND: Preclinical research has demonstrated a causal relationship between medial prefrontal cortex activity and cocaine self-administration. As a step towards translating those data to a neural circuit-based intervention for patients, this study sought to determine if continuous theta burst stimulation (cTBS) to the left frontal pole (FP), would attenuate frontal-striatal activity in two substance-dependent populations. METHODS: Forty-nine substance dependent individuals (25 cocaine, 24 alcohol) completed a single-blind, sham-controlled, crossover study wherein they received 6 trains of real or sham cTBS (110% resting motor threshold, FP1) each visit. Baseline evoked BOLD signal was measured immediately before and after real and sham cTBS (interleaved TMS/BOLD imaging: single pulses to left FP; scalp-to-cortex distance covariate, FWE correction p<0.05) RESULTS: Among cocaine users, real cTBS significantly decreased evoked BOLD signal in the caudate, accumbens, anterior cingulate, orbitofrontal (OFC) and parietal cortex relative to sham cTBS. Among alcohol users, real cTBS significantly decreased evoked BOLD signal in left OFC, insula, and lateral sensorimotor cortex. There was no significant difference between the groups. CONCLUSIONS: These data suggest that 6 trains of left FP cTBS delivered in a single day decreases TMS-evoked BOLD signal in the OFC and several cortical nodes which regulate salience and are typically activated by drug cues. The reliability of this pattern across cocaine- and alcohol-dependent individuals suggests that cTBS may be an effective tool to dampen neural circuits typically engaged by salient drug cues. Multiday studies are required to determine it this has a sustainable effect on the brain or drug use behavior.


Assuntos
Cocaína/farmacologia , Lobo Frontal , Lobo Parietal/fisiopatologia , Córtex Sensório-Motor/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Estudos Cross-Over , Sinais (Psicologia) , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/fisiopatologia , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiopatologia , Humanos , Lobo Parietal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Reprodutibilidade dos Testes , Método Simples-Cego , Estimulação Magnética Transcraniana
10.
Curr Behav Neurosci Rep ; 4(4): 341-352, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30009124

RESUMO

PURPOSE OF THE REVIEW: Cocaine dependence is a chronic and relapsing disorder which is particularly resistant to behavioral or pharmacologic treatment, and likely involves multiple dysfunctional frontal-striatal circuits. Through advances in preclinical research in the last decade, we now have an unprecedented understanding of the neural control of drug-taking behavior. In both rodent models and human clinical neuroimaging studies, it is apparent that medial frontal-striatal limbic circuits regulate drug cue-triggered behavior. While non-human preclinical studies can use invasive stimulation techniques to inhibit drug cue-evoked behavior, in human clinical neuroscience, we are pursuing non-invasive theta burst stimulation (TBS) as a novel therapeutic tool to inhibit drug cue-associated behavior. RECENT FINDINGS: Our laboratory and others have spent the last 7 years systematically and empirically developing a non-invasive, neural circuit-based intervention for cocaine use disorder. Utilizing a multimodal approach of functional brain imaging and brain stimulation, we have attempted to design and optimize a repetitive transcranial magnetic stimulation treatment protocol for cocaine use disorder. This manuscript will briefly review the data largely from our own lab that motivated our selection of candidate neural circuits, and then summarize the results of six studies, culminating in the first double-blinded, sham-controlled clinical trial of TMS as a treatment adjuvant for treatment-engaged cocaine users (10 sessions, medial prefrontal cortex, 110% resting motor threshold, continuous theta burst stimulation, 3600 pulses/session). SUMMARY: The intent of this review is to highlight one example of a systematic path for TMS treatment development in patients. This path is not necessarily optimal, exclusive, or appropriate for every neurologic or psychiatric disease. Rather, it is one example of a reasoned, empirically derived pathway which we hope will serve as scaffolding for future investigators seeking to develop TMS treatment protocols.

11.
Brain Res ; 1628(Pt A): 199-209, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25770818

RESUMO

Vulnerability to drug related cues is one of the leading causes for continued use and relapse among substance dependent individuals. Using drugs in the face of cues may be associated with dysfunction in at least two frontal-striatal neural circuits: (1) elevated activity in medial and ventral areas that govern limbic arousal (including the medial prefrontal cortex (MPFC) and ventral striatum) or (2) depressed activity in dorsal and lateral areas that govern cognitive control (including the dorsolateral prefrontal cortex (DLPFC) and dorsal striatum). Transcranial magnetic stimulation (TMS) is emerging as a promising new tool for the attenuation of craving among multiple substance dependent populations. To date however, nearly all repetitive TMS studies in addiction have focused on amplifying activity in frontal-striatal circuits that govern cognitive control. This manuscript reviews recent work using TMS as a tool to decrease craving for multiple substances and provides a theoretical model for how clinical researchers might approach target and frequency selection for TMS of addiction. To buttress this model, preliminary data from a single-blind, sham-controlled, crossover study of 11 cocaine-dependent individuals is also presented. These results suggest that attenuating MPFC activity through theta burst stimulation decreases activity in the striatum and anterior insula. It is also more likely to attenuate craving than sham TMS. Hence, while many TMS studies are focused on applying LTP-like stimulation to the DLPFC, the MPFC might be a new, efficacious, and treatable target for craving in cocaine dependent individuals.


Assuntos
Encéfalo/fisiopatologia , Fissura/fisiologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/terapia , Estimulação Magnética Transcraniana/métodos , Humanos , Vias Neurais/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA