Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(724): eadd0499, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019930

RESUMO

Pathologic α-synuclein plays an important role in the pathogenesis of α-synucleinopathies such as Parkinson's disease (PD). Disruption of proteostasis is thought to be central to pathologic α-synuclein toxicity; however, the molecular mechanism of this deregulation is poorly understood. Complementary proteomic approaches in cellular and animal models of PD were used to identify and characterize the pathologic α-synuclein interactome. We report that the highest biological processes that interacted with pathologic α-synuclein in mice included RNA processing and translation initiation. Regulation of catabolic processes that include autophagy were also identified. Pathologic α-synuclein was found to bind with the tuberous sclerosis protein 2 (TSC2) and to trigger the activation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which augmented mRNA translation and protein synthesis, leading to neurodegeneration. Genetic and pharmacologic inhibition of mTOR and protein synthesis rescued the dopamine neuron loss, behavioral deficits, and aberrant biochemical signaling in the α-synuclein preformed fibril mouse model and Drosophila transgenic models of pathologic α-synuclein-induced degeneration. Pathologic α-synuclein furthermore led to a destabilization of the TSC1-TSC2 complex, which plays an important role in mTORC1 activity. Constitutive overexpression of TSC2 rescued motor deficits and neuropathology in α-synuclein flies. Biochemical examination of PD postmortem brain tissues also suggested deregulated mTORC1 signaling. These findings establish a connection between mRNA translation deregulation and mTORC1 pathway activation that is induced by pathologic α-synuclein in cellular and animal models of PD.


Assuntos
Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Doença de Parkinson/metabolismo , Proteômica , Serina-Treonina Quinases TOR
2.
Mol Cell Biol ; 43(4): 143-156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37096556

RESUMO

The smallest subunit of the human Origin Recognition Complex, hOrc6, is required for DNA replication progression and plays an important role in mismatch repair (MMR) during S-phase. However, the molecular details of how hOrc6 regulates DNA replication and DNA damage response remain to be elucidated. Orc6 levels are elevated upon specific types of genotoxic stress, and it is phosphorylated at Thr229, predominantly during S-phase, in response to oxidative stress. Many repair pathways, including MMR, mediate oxidative DNA damage repair. Defects in MMR are linked to Lynch syndrome, predisposing patients to many cancers, including colorectal cancer. Orc6 levels are known to be elevated in colorectal cancers. Interestingly, tumor cells show reduced hOrc6-Thr229 phosphorylation compared to adjacent normal mucosa. Further, elevated expression of wild-type and the phospho-dead forms of Orc6 results in increased tumorigenicity, implying that in the absence of this "checkpoint" signal, cells proliferate unabated. Based on these results, we propose that DNA-damage-induced hOrc6-pThr229 phosphorylation during S-phase facilitates ATR signaling in the S-phase, halts fork progression, and enables assembly of repair factors to mediate efficient repair to prevent tumorigenesis. Our study provides novel insights into how hOrc6 regulates genome stability.


Assuntos
Replicação do DNA , Complexo de Reconhecimento de Origem , Humanos , Fosforilação , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Fase S , Instabilidade Genômica , Dano ao DNA
3.
Nat Methods ; 20(4): 523-535, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973549

RESUMO

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Transferência Ressonante de Energia de Fluorescência/métodos , Reprodutibilidade dos Testes , Proteínas/química , Conformação Molecular , Laboratórios
4.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724785

RESUMO

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Assuntos
Microcefalia , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células HEK293 , Serina-Treonina Quinases TOR
5.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168376

RESUMO

Hearing and balance rely on the conversion of a mechanical stimulus into an electrical signal, a process known as mechanosensory transduction (MT). In vertebrates, this process is accomplished by an MT complex that is located in hair cells of the inner ear. While the past three decades of research have identified many subunits that are important for MT and revealed interactions between these subunits, the composition and organization of a functional complex remains unknown. The major challenge associated with studying the MT complex is its extremely low abundance in hair cells; current estimates of MT complex quantity range from 3-60 attomoles per cochlea or utricle, well below the detection limit of most biochemical assays that are used to characterize macromolecular complexes. Here we describe the optimization of two single molecule assays, single molecule pull-down (SiMPull) and single molecule array (SiMoA), to study the composition and quantity of native mouse MT complexes. We demonstrate that these assays are capable of detecting and quantifying low attomoles of the native MT subunits protocadherin-15 (PCDH15) and lipoma HMGIC fusion partner-like protein 5 (LHFPL5). Our results illuminate the stoichiometry of PCDH15- and LHFPL5-containing complexes and establish SiMPull and SiMoA as productive methods for probing the abundance, composition, and arrangement of subunits in the native MT complex.

6.
Nat Commun ; 13(1): 4836, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977929

RESUMO

The mechanistic target of rapamycin (mTOR) signals through the mTOR complex 1 (mTORC1) and the mTOR complex 2 to maintain cellular and organismal homeostasis. Failure to finely tune mTOR activity results in metabolic dysregulation and disease. While there is substantial understanding of the molecular events leading mTORC1 activation at the lysosome, remarkably little is known about what terminates mTORC1 signaling. Here, we show that the AAA + ATPase Thorase directly binds mTOR, thereby orchestrating the disassembly and inactivation of mTORC1. Thorase disrupts the association of mTOR to Raptor at the mitochondria-lysosome interface and this action is sensitive to amino acids. Lack of Thorase causes accumulation of mTOR-Raptor complexes and altered mTORC1 disassembly/re-assembly dynamics upon changes in amino acid availability. The resulting excessive mTORC1 can be counteracted with rapamycin in vitro and in vivo. Collectively, we reveal Thorase as a key component of the mTOR pathway that disassembles and thus inhibits mTORC1.


Assuntos
Aminoácidos , Serina-Treonina Quinases TOR , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Aminoácidos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Proteína Regulatória Associada a mTOR/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(22): e2121406119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35622890

RESUMO

In eukaryotes, the origin recognition complex (ORC) is required for the initiation of DNA replication. The smallest subunit of ORC, Orc6, is essential for prereplication complex (pre-RC) assembly and cell viability in yeast and for cytokinesis in metazoans. However, unlike other ORC components, the role of human Orc6 in replication remains to be resolved. Here, we identify an unexpected role for hOrc6, which is to promote S-phase progression after pre-RC assembly and DNA damage response. Orc6 localizes at the replication fork and is an accessory factor of the mismatch repair (MMR) complex. In response to oxidative damage during S phase, often repaired by MMR, Orc6 facilitates MMR complex assembly and activity, without which the checkpoint signaling is abrogated. Mechanistically, Orc6 directly binds to MutSα and enhances the chromatin-association of MutLα, thus enabling efficient MMR. Based on this, we conclude that hOrc6 plays a fundamental role in genome surveillance during S phase.


Assuntos
Reparo de Erro de Pareamento de DNA , Complexo de Reconhecimento de Origem , Fase S , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas MutL/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Ligação Proteica
8.
Nature ; 594(7863): 448-453, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33981040

RESUMO

AMPA-selective glutamate receptors mediate the transduction of signals between the neuronal circuits of the hippocampus1. The trafficking, localization, kinetics and pharmacology of AMPA receptors are tuned by an ensemble of auxiliary protein subunits, which are integral membrane proteins that associate with the receptor to yield bona fide receptor signalling complexes2. Thus far, extensive studies of recombinant AMPA receptor-auxiliary subunit complexes using engineered protein constructs have not been able to faithfully elucidate the molecular architecture of hippocampal AMPA receptor complexes. Here we obtain mouse hippocampal, calcium-impermeable AMPA receptor complexes using immunoaffinity purification and use single-molecule fluorescence and cryo-electron microscopy experiments to elucidate three major AMPA receptor-auxiliary subunit complexes. The GluA1-GluA2, GluA1-GluA2-GluA3 and GluA2-GluA3 receptors are the predominant assemblies, with the auxiliary subunits TARP-γ8 and CNIH2-SynDIG4 non-stochastically positioned at the B'/D' and A'/C' positions, respectively. We further demonstrate how the receptor-TARP-γ8 stoichiometry explains the mechanism of and submaximal inhibition by a clinically relevant, brain-region-specific allosteric inhibitor.


Assuntos
Hipocampo/metabolismo , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Canais de Cálcio/ultraestrutura , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Modelos Moleculares , Receptores de AMPA/ultraestrutura
9.
J Biol Chem ; 295(47): 16166-16179, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32994222

RESUMO

The Hippo pathway plays an important role in developmental biology, mediating organ size by controlling cell proliferation through the activity of a core kinase cassette. Multiple upstream events activate the pathway, but how each controls this core kinase cassette is not fully understood. Activation of the core kinase cassette begins with phosphorylation of the kinase MST1/2 (also known as STK3/4). Here, using a combination of in vitro biochemistry and cell-based assays, including chemically induced dimerization and single-molecule pulldown, we revealed that increasing the proximity of adjacent kinase domains, rather than formation of a specific protein assembly, is sufficient to trigger autophosphorylation. We validate this mechanism in cells and demonstrate that multiple events associated with the active pathway, including SARAH domain-mediated homodimerization, membrane recruitment, and complex formation with the effector protein SAV1, each increase the kinase domain proximity and autophosphorylation of MST2. Together, our results reveal that multiple and distinct upstream signals each utilize the same common molecular mechanism to stimulate MST2 autophosphorylation. This mechanism is likely conserved among MST2 homologs. Our work also highlights potential differences in Hippo signal propagation between each activating event owing to differences in the dynamics and regulation of each protein ensemble that triggers MST2 autophosphorylation and possible redundancy in activation.


Assuntos
Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Ativação Enzimática , Células HEK293 , Via de Sinalização Hippo , Humanos , Fosforilação , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinase 3 , Transdução de Sinais
10.
Nat Commun ; 11(1): 4531, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913225

RESUMO

RNAs begin to fold and function during transcription. Riboswitches undergo cotranscriptional switching in the context of transcription elongation, RNA folding, and ligand binding. To investigate how these processes jointly modulate the function of the folate stress-sensing Fusobacterium ulcerans ZTP riboswitch, we apply a single-molecule vectorial folding (VF) assay in which an engineered superhelicase Rep-X sequentially releases fluorescently labeled riboswitch RNA from a heteroduplex in a 5'-to-3' direction, at ~60 nt s-1 [comparable to the speed of bacterial RNA polymerase (RNAP)]. We demonstrate that the ZTP riboswitch is kinetically controlled and that its activation is favored by slower unwinding, strategic pausing between but not before key folding elements, or a weakened transcription terminator. Real-time single-molecule monitoring captures folding riboswitches in multiple states, including an intermediate responsible for delayed terminator formation. These results show how individual nascent RNAs occupy distinct channels within the folding landscape that controls the fate of the riboswitch.


Assuntos
Fusobacterium/genética , Regulação Bacteriana da Expressão Gênica , Dobramento de RNA/genética , RNA Bacteriano/genética , Riboswitch/genética , Aminoimidazol Carboxamida/metabolismo , Fusobacterium/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/metabolismo , Ribonucleotídeos/metabolismo , Imagem Individual de Molécula , Transcrição Gênica
11.
iScience ; 23(5): 101038, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32344376

RESUMO

Telomeres are maintained by telomerase or in a subset of cancer cells by a homologous recombination (HR)-based mechanism, Alternative Lengthening of Telomeres (ALT). The mechanisms regulating telomere-homeostasis in ALT cells remain unclear. We report that a replication initiator protein, Origin Recognition Complex-Associated (ORCA/LRWD1), by localizing at the ALT-telomeres, modulates HR activity. ORCA's localization to the ALT-telomeres is facilitated by its interaction to SUMOylated shelterin components. The loss of ORCA in ALT-positive cells elevates the levels of two mediators of HR, RPA and RAD51, and consistent with this, we observe increased ALT-associated promyelocytic leukemia body formation and telomere sister chromatid exchange. ORCA binds to RPA and modulates the association of RPA to telomeres. Finally, the loss of ORCA causes global chromatin decondensation, including at the telomeres. Our results demonstrate that ORCA acts as an inhibitor of HR by modulating RPA binding to ssDNA and inducing chromatin compaction.

12.
Nucleic Acids Res ; 47(21): 11044-11056, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31617570

RESUMO

A human telomere ends in a single-stranded 3' tail, composed of repeats of T2AG3. G-quadruplexes (GQs) formed from four consecutive repeats have been shown to possess high-structural and mechanical diversity. In principle, a GQ can form from any four repeats that are not necessarily consecutive. To understand the dynamics of GQs with positional multiplicity, we studied five and six repeats human telomeric sequence using a combination of single molecule FRET and optical tweezers. Our results suggest preferential formation of GQs at the 3' end both in K+ and Na+ solutions, with minor populations of 5'-GQ or long-loop GQs. A vectorial folding assay which mimics the directional nature of telomere extension showed that the 3' preference holds even when folding is allowed to begin from the 5' side. In 100 mM K+, the unassociated T2AG3 segment has a streamlining effect in that one or two mechanically distinct species was observed at a single position instead of six or more observed without an unassociated repeat. We did not observe such streamlining effect in 100 mM Na+. Location of GQ and reduction in conformational diversity in the presence of extra repeats have implications in telomerase inhibition, T-loop formation and telomere end protection.


Assuntos
DNA/química , Quadruplex G , Telômero , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Pinças Ópticas
13.
Nat Commun ; 10(1): 4318, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541108

RESUMO

Recent advances in fluorogen-binding "light-up" RNA aptamers have enabled protein-free detection of RNA in cells. Detailed biophysical characterization of folding of G-Quadruplex (GQ)-based light-up aptamers such as Spinach, Mango and Corn is still lacking despite the potential implications on their folding and function. In this work we employ single-molecule fluorescence-force spectroscopy to examine mechanical responses of Spinach2, iMangoIII and MangoIV. Spinach2 unfolds in four discrete steps as force is increased to 7 pN and refolds in reciprocal steps upon force relaxation. In contrast, GQ-core unfolding in iMangoIII and MangoIV occurs in one discrete step at forces >10 pN and refolding occurred at lower forces showing hysteresis. Co-transcriptional folding using superhelicases shows reduced misfolding propensity and allowed a folding pathway different from refolding. Under physiologically relevant pico-Newton levels of force, these aptamers may unfold in vivo and subsequently misfold. Understanding of the dynamics of RNA aptamers will aid engineering of improved fluorogenic modules for cellular applications.


Assuntos
Biofísica/métodos , Mangifera/metabolismo , Dobramento de Proteína , Spinacia oleracea/metabolismo , Aptâmeros de Nucleotídeos , Compostos de Benzil , Quadruplex G , Imidazolinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(17): 8350-8359, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30944218

RESUMO

G-quadruplexes (GQs) can adopt diverse structures and are functionally implicated in transcription, replication, translation, and maintenance of telomere. Their conformational diversity under physiological levels of mechanical stress, however, is poorly understood. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to measure human telomeric sequences under tension. Abrupt GQ unfolding with K+ in solution occurred at as many as four discrete levels of force. Added to an ultrastable state and a gradually unfolding state, there were six mechanically distinct structures. Extreme mechanical diversity was also observed with Na+, although GQs were mechanically weaker. Our ability to detect small conformational changes at low forces enabled the determination of refolding forces of about 2 pN. Refolding was rapid and stochastically redistributed molecules to mechanically distinct states. A single guanine-to-thymine substitution mutant required much higher ion concentrations to display GQ-like unfolding and refolded via intermediates, contrary to the wild type. Contradicting an earlier proposal, truncation to three hexanucleotide repeats resulted in a single-stranded DNA-like mechanical behavior under all conditions, indicating that at least four repeats are required to form mechanically stable structures.


Assuntos
DNA/ultraestrutura , Transferência Ressonante de Energia de Fluorescência/métodos , Quadruplex G , Telômero/ultraestrutura , DNA/química , Guanina/química , Humanos , Pinças Ópticas , Sequências Repetitivas de Ácido Nucleico , Telômero/química , Timina/química
15.
Elife ; 82019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30810525

RESUMO

Transcription activator-like effectors (TALEs) bind DNA through an array of tandem 34-residue repeats. How TALE repeat domains wrap around DNA, often extending more than 1.5 helical turns, without using external energy is not well understood. Here, we examine the kinetics of DNA binding of TALE arrays with varying numbers of identical repeats. Single molecule fluorescence analysis and deterministic modeling reveal conformational heterogeneity in both the free- and DNA-bound TALE arrays. Our findings, combined with previously identified partly folded states, indicate a TALE instability that is functionally important for DNA binding. For TALEs forming less than one superhelical turn around DNA, partly folded states inhibit DNA binding. In contrast, for TALEs forming more than one turn, partly folded states facilitate DNA binding, demonstrating a mode of 'functional instability' that facilitates macromolecular assembly. Increasing repeat number slows down interconversion between the various DNA-free and DNA-bound states.


Assuntos
DNA/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula
17.
J Virol ; 90(2): 1139-43, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26491150

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates the host cell cycle to create an environment optimal for its viral-DNA replication during the lytic life cycle. We report here that KSHV vIRF4 targets the ß-catenin/CBP cofactor and blocks its occupancy on the cyclin D1 promoter, suppressing the G1-S cell cycle progression and enhancing KSHV replication. This shows that KSHV vIRF4 suppresses host G1-S transition, possibly providing an intracellular milieu favorable for its replication.


Assuntos
Pontos de Checagem do Ciclo Celular , Genes bcl-1 , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Fatores Reguladores de Interferon/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Sialoglicoproteínas/antagonistas & inibidores , Proteínas Virais/metabolismo , beta Catenina/antagonistas & inibidores , Regulação para Baixo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA