Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39211127

RESUMO

Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Unlike the traditional hydrophobic nuclear export signal (NES) utilized by the Exportin-1/XPO1 system, cryogenic-electron microscopy structures reveal that Pho4 presents a novel, phosphorylated 35-residue NES that interacts with the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches, unveiling a previously unknown mechanism of phosphate-specific recognition. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4's release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.

2.
Structure ; 30(4): 485-497.e3, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35093200

RESUMO

As part of a project to build a spatiotemporal model of the pancreatic ß-cell, we are creating an immersive experience called "World in a Cell" that can be used to integrate and create new educational tools. To do this, we have developed a new visual design language that uses tetrahedral building blocks to express the structural features of biological molecules and organelles in crowded cellular environments. The tetrahedral language enables more efficient animation and user interaction in an immersive environment.


Assuntos
Idioma
3.
Science ; 368(6489): 428-433, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32327598

RESUMO

The melanocortin-4 receptor (MC4R) is involved in energy homeostasis and is an important drug target for syndromic obesity. We report the structure of the antagonist SHU9119-bound human MC4R at 2.8-angstrom resolution. Ca2+ is identified as a cofactor that is complexed with residues from both the receptor and peptide ligand. Extracellular Ca2+ increases the affinity and potency of the endogenous agonist α-melanocyte-stimulating hormone at the MC4R by 37- and 600-fold, respectively. The ability of the MC4R crystallized construct to couple to ion channel Kir7.1, while lacking cyclic adenosine monophosphate stimulation, highlights a heterotrimeric GTP-binding protein (G protein)-independent mechanism for this signaling modality. MC4R is revealed as a structurally divergent G protein-coupled receptor (GPCR), with more similarity to lipidic GPCRs than to the homologous peptidic GPCRs.


Assuntos
Cálcio/química , Receptor Tipo 4 de Melanocortina/química , Receptores Acoplados a Proteínas G/química , Cristalografia por Raios X , AMP Cíclico/química , Humanos , Ligantes , Hormônios Estimuladores de Melanócitos/química , Hormônios Estimuladores de Melanócitos/farmacologia , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA