Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(5): e0197157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768477

RESUMO

OBJECTIVE: This study evaluates the potential for improving patient safety by introducing a metacognitive attention aid that enables clinicians to more easily access and use existing alarm/alert information. It is hypothesized that this introduction will enable clinicians to easily triage alarm/alert events and quickly recognize emergent opportunities to adapt care delivery. The resulting faster response to clinically important alarms/alerts has the potential to prevent adverse events and reduce healthcare costs. MATERIALS AND METHODS: A randomized within-subjects single-factor clinical experiment was conducted in a high-fidelity 20-bed simulated acute care hospital unit. Sixteen registered nurses, four at a time, cared for five simulated patients each. A two-part highly realistic clinical scenario was used that included representative: tasking; information; and alarms/alerts. The treatment condition introduced an integrated wearable attention aid that leveraged metacognition methods from proven military systems. The primary metric was time for nurses to respond to important alarms/alerts. RESULTS: Use of the wearable attention aid resulted in a median relative within-subject improvement for individual nurses of 118% (W = 183, p = 0.006). The top quarter of relative improvement was 3,303% faster (mean; 17.76 minutes reduced to 1.33). For all unit sessions, there was an overall 148% median faster response time to important alarms (8.12 minutes reduced to 3.27; U = 2.401, p = 0.016), with 153% median improvement in consistency across nurses (F = 11.670, p = 0.001). DISCUSSION AND CONCLUSION: Existing device-centric alarm/alert notification solutions can require too much time and effort for nurses to access and understand. As a result, nurses may ignore alarms/alerts as they focus on other important work. There has been extensive research on reducing alarm frequency in healthcare. However, alarm safety remains a top problem. Empirical observations reported here highlight the potential of improving patient safety by supporting the meta-work of checking alarms.


Assuntos
Atenção , Alarmes Clínicos/economia , Metacognição , Enfermeiras e Enfermeiros , Triagem , Dispositivos Eletrônicos Vestíveis/economia , Feminino , Humanos , Masculino , Triagem/economia , Triagem/métodos
2.
AMIA Annu Symp Proc ; 2014: 544-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25954359

RESUMO

Alarm fatigue caused by false alarms and alerts is an extremely important issue for the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the staff and hospital systems better classify a patient's waveforms and subsequent alarms. This paper explores the use of Echo State Networks, a specific type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network architectures are designed and evaluated. The results show the utility of these echo state networks, particularly ones with larger integrated reservoirs, for predicting electrocardiogram waveforms and the adaptability of such models across individuals. The work presented here offers a unique approach for understanding and predicting a patient's waveforms in order to potentially improve alarm generation. We conclude with a brief discussion of future extensions of this research.


Assuntos
Pressão Arterial , Eletrocardiografia , Redes Neurais de Computação , Alarmes Clínicos , Mineração de Dados/métodos , Humanos , Unidades de Terapia Intensiva , Monitorização Fisiológica/instrumentação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA