Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38761179

RESUMO

Although thin-film composite membranes have achieved great success in CO2 separation, further improvements in the CO2 permeance are required to reduce the size and cost of the CO2 separation process. Herein, we report the fabrication of composite membranes with high CO2 permeability using a laser-patterned porous membrane as the support membrane. High-aspect-ratio micropatterns with well-defined micropores on their surface were carved on microporous polymer supports by a direct laser writing process using a short-pulsed laser. By using a Galvano scanner and optimizing the laser conditions and target materials, in-plane micropatterns, such as microhole arrays, microline grating, microlattices, and out-of-plane hierarchical micropatterns, were created on porous membranes. An aqueous suspension of hydrogel microparticles doped with an amine-based mobile carrier was sprayed onto the patterned surface to form a defect-free thin separation layer. The surface area of the separation layer on the patterned support is up to 80% larger than that of flat pristine membranes, resulting in a 52% higher CO2 permeance (1106 GPU) with a CO2/N2 selectivity of 172. The laser-patterned porous membranes allow the development of inexpensive and high-performance functional membranes not only for CO2 separation but also for other applications, such as water treatment, cell culture, micro-TAS, and membrane reactors.

2.
Langmuir ; 40(19): 10355-10361, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38688035

RESUMO

Molecular assemblies that transform in response to pH and saccharide concentration are promising nanomaterials in the field of biomedicine, and polymeric micelles of amphiphilic polymers with phenylboronic acids (PBAs) have been studied. Herein, we report the impact of zwitterions on the acidity constant for the collapse and the glucose sensitivity of a polymeric micelle produced from a diblock copolymer comprising polyacrylamides with PBA and zwitterionic carboxybetaine (PAEBB-b-PCBAAm). The diblock copolymer was synthesized through reversible addition-fragmentation chain-transfer polymerization followed by deprotection. PAEBB-b-PCBAAm produced micellar aggregates in aqueous solutions at a neutral pH, and the polymeric micelles collapsed at a pH of 11.0 because the PBA transformed into a hydroxyboronate anion. The pKa decreased in the presence of glucose owing to boronate ester formation. The PCBAAm chain significantly increased the pH at which the molecular assemblies dissociated. This is probably because the pKa of boronic acid increased through the dipolar interaction of zwitterions, and/or the zwitterionic polymer corona is valid for screening of PBA ionization and electrostatic repulsion of boronate anions. This study on the modulation of pKa through the zwitterionic interaction can facilitate the molecular design of pH- and saccharide-responsive biomaterials.

3.
Chempluschem ; : e202400136, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535777

RESUMO

Cyclic polymers, which are found in the field of biopolymers, exhibit unique physical properties such as suppressed molecular mobility. Considering thermodynamics, the suppressed molecular mobility of cyclic polymers is expected to prevent unfavorable entropy loss in molecular interactions. In this study, we synthesized cyclic glycopolymers carrying galactose units and investigated the effects of their molecular mobility on the interactions with a lectin (peanut agglutinin). The synthesized cyclic glycopolymers exhibited delayed elution time on size exclusion chromatography and a short spin-spin relaxation time, indicating typical characteristics of cyclic polymers, including smaller hydrodynamic size and suppressed molecular mobility. The hemagglutination inhibition assay revealed that the cyclic glycopolymers exhibited weakened interactions with PNA compared to the linear counterparts, attributable to the suppressed molecular mobility. Although the results are contrary to our expectations, the impact of polymer topology on molecular recognition remains intriguing, particularly in the context of protein repellent activity in the biomedical field.

5.
Chempluschem ; : e202400039, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549362

RESUMO

Continuous-flow syntheses using immobilized catalysts can offer efficient chemical processes with easy separation and purification. Porous polymers have gained significant interests for their applications to catalytic systems in the field of organic chemistry. The porous polymers are recognized for their large surface area, high chemical stability, facile modulation of surface chemistry, and cost-effectiveness. It is crucial to immobilize transition-metal catalysts due to their difficult separation and high toxicity. Supported phosphine ligands represent a noteworthy system for the effective immobilization of metal catalysts and modulation of catalytic properties. Researchers have been actively pursuing strategies involving phosphine-metal complexes supported on porous polymers, aiming for high activities, durabilities, selectivities, and applicability to continuous-flow systems. This review provides a concise overview of phosphine-metal complexes supported on porous polymers for continuous-flow catalytic reactions. Polymer catalysts are categorized based on pore sizes, including micro-, meso-, and macroporous polymers. The characteristics of these porous polymers are explored concerning their efficiency in immobilized catalysis and continuous-flow systems.

6.
ACS Appl Mater Interfaces ; 16(6): 7709-7720, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38311921

RESUMO

Here, we report the design rationale of CO2 separation membranes with micropatterned surface structures. Thin film composite (TFC) membranes with micropatterned surface structures were fabricated by spray coating amine-containing hydrogel particles on the top of micropatterned porous support membranes, which were synthesized by a polymerization-induced phase separation process in a micromold (PIPsµM). The pore size of the support membranes was optimized by tuning the proportion of good and poor solvents for the polymerization process so that the microgels would be assembled as a defect-free separation layer. The relationship between the size of the micropatterned structures on the surface of the support membrane and the thickness of the separation layer was optimized to maximize the surface area of the separation layer. The rationally designed micropatterned TFC membrane showed a CO2 permeability (835.8 GPU) proportional to the increase in surface area relative to the flat membrane with a high CO2/N2 selectivity of 58.7. The rational design for micropatterned TFC membranes will enable the development of inexpensive and high-performance functional membranes not only for CO2 separation but also for other applications such as water treatment and membrane reactors.

7.
J Mater Chem B ; 12(7): 1782-1787, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38314931

RESUMO

Carbohydrate-based membranes that show molecular recognition ability are interesting mimics of biointerfaces. Herein, we prepared glycopolymer membranes on QCM-D sensor chips using a solvent-assisted method and investigated their interactions with a target lectin. The membrane containing the glycopolymer with a random arrangement of the carbohydrate units adsorbed more lectin than that containing the glycopolymer with an organized block of carbohydrate units.


Assuntos
Carboidratos , Lectinas , Solventes
8.
J Am Chem Soc ; 145(42): 23143-23151, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844138

RESUMO

High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins' interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood-brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an "informed" selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug.


Assuntos
Isquemia Encefálica , Proteína HMGB1 , Traumatismo por Reperfusão , Ratos , Animais , Proteína HMGB1/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Inflamação/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Heparina/metabolismo
9.
Chem Asian J ; 18(19): e202300643, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37622191

RESUMO

Carbohydrates are involved in life activities through the interactions with their corresponding proteins (lectins). Pathogen infection and the regulation of cell activity are controlled by the binding between lectins and glycoconjugates on cell surfaces. A deeper understanding of the interactions of glycoconjugates has led to the development of therapeutic and preventive methods for infectious diseases. Glycopolymer is one of the classes of the materials present multiple carbohydrates. The properties of glycopolymers can be tuned through the molecular design of the polymer structures. This review focuses on research over the past decade on the design of glycopolymers with the aim of developing inhibitors against pathogens and manipulator of cellular functions.

10.
Chemistry ; 29(55): e202301847, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37423896

RESUMO

Metal centers that can generate coordinatively unsaturated metals in accessible and stable states have been developed using synthetic polymers with sophisticated ligand and scaffold designs, which required synthetic efforts. Herein, we report a simple and direct strategy for producing polymer-supported phosphine-metal complexes, which stabilizes mono-P-ligated metals by modulating the electronic properties of the aryl pendant groups in the polymer platform. A three-fold vinylated PPh3 was copolymerized with a styrene derivative and a cross-linker to produce a porous polystyrene-phosphine hybrid monolith. Based on the Hammett substituent constants, the electronic properties of styrene derivatives were modulated and incorporated into the polystyrene backbone to stabilize the mono-P-ligated Pd complex via Pd-arene interactions. Through NMR, TEM, and comparative catalytic studies, the polystyrene-phosphine hybrid, which induces selective mono-P-ligation and moderate Pd-arene interactions, demonstrated high catalytic durability for the cross-coupling of chloroarenes under continuous-flow conditions.

11.
ACS Macro Lett ; 12(6): 733-737, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37195210

RESUMO

Self-folding behavior of amphiphilic polymers in aqueous environments mimics the structures of biomacromolecules (e.g., proteins). Since both the three-dimensional structure (static) and the molecular flexibility (dynamic) of a protein are essential for its biological functions, the latter should be considered when designing synthetic polymers that are intended to mimic proteins. Herein, we investigated the correlation between the self-folding behavior of amphiphilic polymers and their molecular flexibility. We synthesized amphiphilic polymers by subjecting N,N-dimethylacrylamide (hydrophilic) and N-benzylacrylamide (hydrophobic) to living radical polymerization. Polymers containing 10, 15, and 20 mol % of N-benzylacrylamide demonstrated self-folding behavior in an aqueous phase. The spin-spin relaxation time (T2) of the hydrophobic segments decreased with the percent collapse of the polymer molecules, indicating that mobility was restricted by the self-folding behavior. Furthermore, comparison of the polymers with random and block sequences revealed that the mobility of hydrophobic segments was not affected by the component of the local segments.

12.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501517

RESUMO

Continuous flow reactors with immobilized catalysts are in great demand in various industries, to achieve easy separation, regeneration, and recycling of catalysts from products. Oxidation of alcohols with 4-amino-TEMPO-immobilized monolith catalyst was investigated in batch and continuous flow systems. The polymer monoliths were prepared by polymerization-induced phase separation using styrene derivatives, and 4-amino-TEMPO was immobilized on the polymer monolith with a flow reaction. The prepared 4-amino-TEMPO-immobilized monoliths showed high permeability, due to their high porosity. In batch oxidation, the reaction rate of 4-amino-TEMPO-immobilized monolith varied with stirring. In flow oxidation, the eluent permeated without clogging, and efficient flow oxidation was possible with residence times of 2-8 min. In the recycling test of the flow oxidation reaction, the catalyst could be used at least six times without catalyst deactivation.

13.
Angew Chem Int Ed Engl ; 61(30): e202206456, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35567515

RESUMO

Synthetic polymer nanoparticles (NPs) that recognize and neutralize target biomacromolecules are of considerable interest as "plastic antibodies", synthetic mimics of antibodies. However, monomer sequences in the synthetic NPs are heterogeneous. The heterogeneity limits the target specificity and safety of the NPs. Herein, we report the synthesis of NPs with uniform monomer sequences for recognition and neutralization of target peptides. A multifunctional oligomer with a precise monomer sequence that recognizes the target peptide was prepared via cycles of reversible addition-fragmentation chain transfer (RAFT) polymerization and flash chromatography. The oligomer or blend of oligomers was used as a chain transfer agent and introduced into poly(N-isopropyl acrylamide) hydrogel NPs by radical polymerization. Evaluation of the interaction with the peptides revealed that multiple oligomers in NPs cooperatively recognized the sequence of the target peptide and neutralized its toxicity. Effect of sequence, combination, density and molecular weight distribution of precision oligomers on the affinity to the peptides was also investigated.


Assuntos
Nanopartículas , Polímeros , Hidrogéis , Nanopartículas/química , Peptídeos/química , Polimerização , Polímeros/química
14.
ACS Omega ; 7(15): 13254-13259, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474828

RESUMO

Commercialized oligosaccharides such as GM1 are useful for biological applications but generally expensive. Thus, facile access to an effective alternative is desired. Glycopolymers displaying both carbohydrate and hydrophobic units are promising materials as alternatives to oligosaccharides. Prediction of the appropriate polymer structure as an oligosaccharide mimic is difficult, and screening of the many candidates (glycopolymer library) is required. However, repeating polymerization manipulation for each polymer sample to prepare the glycopolymer library is time-consuming. Herein, we report a facile preparation of the glycopolymer library of GM1 mimics by photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization. Glycopolymers displaying galactose units were synthesized in various ratios of hydrophobic acrylamide derivatives. The synthesized glycopolymers were immobilized on a gold surface, and the interactions with cholera toxin B subunits (CTB) were analyzed using surface plasmon resonance imaging (SPRI). The screening by SPRI revealed the correlation between the log P values of the hydrophobic monomers and the interactions of the glycopolymers with CTB, and the appropriate polymer structure as a GM1 mimic was determined. The combination of the one-time preparation and the fast screening of the glycopolymer library provides a new strategy to access the synthetic materials for critical biomolecular recognition.

15.
J Mater Chem B ; 10(14): 2597-2601, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989755

RESUMO

Carbohydrates on cell surfaces are known to interact not only with lectins but also with other carbohydrates; the latter process is known as a carbohydrate-carbohydrate interaction. Such interactions are observed in complex oligosaccharides. It would be surprising if these interactions were observed in simple monosaccharides of mannose. In this study, the interaction between glycopolymers carrying monosaccharides of mannose was quantitatively investigated by quartz crystal microbalance measurements. We measured the interactions with glycopolymers carrying mannose, galactose and glucose. Surprisingly, the interaction between the glycopolymers and mannose was much stronger than that between other saccharides.


Assuntos
Carboidratos , Manosídeos , Carboidratos/química , Lectinas/química , Manose/química , Técnicas de Microbalança de Cristal de Quartzo
16.
Biomacromolecules ; 23(3): 1232-1241, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34968049

RESUMO

Synthetic polymers with well-defined structures allow the development of nanomaterials with additional functions beyond biopolymers. Herein, we demonstrate de novo design of star-shaped glycoligands to interact with hemagglutinin (HA) using well-defined synthetic polymers with the aim of developing an effective inhibitor for the influenza virus. Prior to the synthesis, the length of the star polymer chains was predicted using the Gaussian model of synthetic polymers, and the degree of polymerization required to achieve multivalent binding to three carbohydrate recognition domains (CRDs) of HA was estimated. The star polymer with the predicted degree of polymerization was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, and 6'-sialyllactose was conjugated as the glycoepitope for HA. The designed glycoligand exhibited the strongest interaction with HA as a result of multivalent binding. This finding demonstrated that the biological function of the synthetic polymer could be controlled by precisely defining the polymer structures.


Assuntos
Influenza Humana , Nanoestruturas , Hemaglutininas , Humanos , Influenza Humana/tratamento farmacológico , Nanoestruturas/química , Polimerização , Polímeros/química
17.
Chem Commun (Camb) ; 57(83): 10871-10874, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34585193

RESUMO

The "carbohydrate module method" is a promising approach for oligosaccharide mimetics using polymeric materials. However, it is difficult to predict the optimal structure for a particular oligosaccharide mimetic, and an efficient strategy for the synthesis and evaluation of glycopolymers is desirable. In this study, a screening of glycopolymers for the "carbohydrate module method" by a combination of photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization and surface plasmon resonance imaging (SPRI) is demonstrated. The facile and fast screening of synthetic glycomimetics was achieved, and the glycopolymer with the optimal structure as a GM1 mimetic strongly interacted with the cholera toxin B subunit.

18.
ACS Appl Mater Interfaces ; 13(27): 32184-32192, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197066

RESUMO

Thermocells are thermoelectrochemical conversion systems for harvesting low-temperature thermal energy. Liquid-state thermocells are particularly desirable because of low cost and their high conversion efficiency at temperatures around physiological temperature, and they have, thus, been extensively studied. However, the performance of the thermocells has to be improved to utilize them as energy chargers and/or batteries. Recently, we reported that a liquid-state thermocell driven by the volume phase transition of hydrogel nanoparticles showed highly efficient thermoelectric conversion with Seebeck coefficient (Se) of -6.7 mV K-1. Here, we report the design rationale of the thermocells driven by the phase transition. A high Se of -9.5 mV K-1 was achieved at temperature between 36 and 40 °C by optimizing choice and amount of redox chemical species. The figure of merit (ZT) of the thermocell was improved by selecting appropriate electrolyte salt to increase the ionic conductivity and prevent the precipitation of nanoparticles. Furthermore, screening of nanoparticles revealed the high correlation between Se and the pH shift generated as a result of phase transition of the nanoparticles. After optimization, the maximum ZT of 8.0 × 10-2 was achieved at a temperature between 20 and 70 °C.

19.
Biomacromolecules ; 22(7): 3119-3127, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34152744

RESUMO

Molecular mobility is important for interactions of biofunctional polymers with target molecules. Monomer structures for synthetic biofunctional polymers are usually selected based on their compatibility with polymerization systems, whereas the influence of monomer structures on the interaction with target molecules is hardly considered. In this report, we evaluate the correlation between the monomer structures of glycopolymers and their interactions with concanavalin A (ConA) with respect to the molecular mobility. Two types of glycopolymers bearing mannose are synthesized with acrylamide or acrylate monomers. Despite the similar structures, except for amide or ester bonds in the side chains, the acrylate-type glycopolymers exhibit stronger interaction with ConA both in the isothermal titration calorimetry measurement and in a hemagglutination inhibition assay. Characterization of the acrylate-type glycopolymers suggests that the higher binding constant arises from the higher molecular mobility of mannose units, which results from the rotational freedom of ester bonds in their side chains.


Assuntos
Polímeros , Concanavalina A , Ligantes , Substâncias Macromoleculares , Polimerização
20.
ACS Appl Mater Interfaces ; 13(25): 30030-30038, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34139838

RESUMO

The development of robust and thin CO2 separation membranes that allow fast and selective permeation of CO2 will be crucial for rebalancing the global carbon cycle. Hydrogels are attractive membrane materials because of their tunable chemical properties and exceptionally high diffusion coefficients for solutes. However, their fragility prevents the fabrication of thin defect-free membranes suitable for gas separation. Here, we report the assembly of defect-free hydrogel nanomembranes for CO2 separation. Such membranes can be prepared by coating an aqueous suspension of colloidal hydrogel microparticles (microgels) onto a flat, rough, or micropatterned porous support as long as the pores are hydrophilic and the pore size is smaller than the diameter of the microgels. The deformability of the microgel particles enables the autonomous assembly of defect-free 30-50 nm-thick membrane layers from deformed ∼15 nm-thick discoidal particles. Microscopic analysis established that the penetration of water into the pores driven by capillary force assists the assembly of a defect-free dense hydrogel layer on the pores. Although the dried films did not show significant CO2 permeance even in the presence of amine groups, the permeance dramatically increased when the membranes are adequately hydrated to form a hydrogel. This result indicated the importance of free water in the membranes to achieve fast diffusion of bicarbonate ions. The hydrogel nanomembranes consisting of amine-containing microgel particles show selective CO2 permeation (850 GPU, αCO2/N2 = 25) against post-combustion gases. Acid-containing microgel membranes doped with amines show highly selective CO2 permeation against post-combustion gases (1010 GPU, αCO2/N2 = 216) and direct air capture (1270 GPU, αCO2/N2 = 2380). The membrane formation mechanism reported in this paper will provide insights into the self-assembly of soft matters. Furthermore, the versatile strategy of fabricating hydrogel nanomembranes by the autonomous assembly of deformable microgels will enable the large-scale manufacturing of high-performance separation membranes, allowing low-cost carbon capture from post-combustion gases and atmospheric air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA