Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Rep ; 8: 1937-1947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926172

RESUMO

Carbonic anhydrase (CA) catalyzes reversible hydration of CO2 to HCO3 - to mediate pH and ion homeostasis. Some chemical pollutants have been reported to have inhibitory effects on fish CA. In this study, we investigated effects of a CA inhibitor ethoxyzolamide (EZA) on neuromasts development during zebrafish embryogenesis, since embryogenesis in aquatic organisms can be particularly sensitive to water pollution. EZA caused alteration of pH and calcium concentration and production of reactive oxygen species (ROS) in larvae, and induced apoptosis in hair cells especially in the otic neuromast, in which CA2 was distributed on the body surface. mRNA levels of apoptotic genes and caspase activities were increased by EZA, whereas anti-oxidants and apoptotic inhibitors, Bax, NF-κB, and p53 inhibitors significantly relieved the induction of hair cell death. Also, mRNA levels of Bip and CHOP, which are induced in response to ER stress, were upregulated by EZA, suggesting that EZA induces otic hair cell apoptosis via the intrinsic mitochondrial pathway and ER stress. Our results demonstrated an essential role of CA in neuromast development via maintenance of ion transport and pH, and that the CA, which is directly exposed to the ambient water, shows marked sensitivity to EZA.

2.
Mar Biotechnol (NY) ; 19(5): 430-440, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28695384

RESUMO

In vertebrates, carbonic anhydrases (CAs) play important roles in ion transport and pH regulation in many organs, including the eyes, kidneys, central nervous system, and inner ear. In aquatic organisms, the enzyme is inhibited by various chemicals present in the environment, such as heavy metals, pesticides, and pharmaceuticals. In this study, the effects of CA inhibitors, i.e., sulfonamides [ethoxyzolamide (EZA), acetazolamide (AZA), and dorzolamide (DZA)], on zebrafish embryogenesis were investigated. In embryos treated with the sulfonamides, abnormal development, such as smaller otoliths, an enlarged heart, an irregular pectoral fin, and aberrant swimming behavior, was observed. Especially, the development of otoliths and locomotor activity was severely affected by all the sulfonamides, and EZA was a consistently stronger inhibitor than AZA or DZA. In the embryos treated with EZA, inner ear hair cells containing several CA isoforms, which provide HCO3- to the endolymph for otolith calcification and maintain an appropriate pH there, were affected. Acridine orange/ethidium bromide staining indicated that the hair cell damage in the inner ear and pectral fin is due to apoptosis. Moreover, RNA measurement demonstrated that altered gene expression of cell cycle arrest- and apoptosis-related proteins p53, p21, p27, and Bcl-2 occurred even at 0.08 ppm with which normal development was observed. This finding suggests that a low concentration of EZA may affect embryogenesis via the apoptosis pathway. Thus, our findings demonstrated the importance of potential risk assessment of CA inhibition, especially regarding the formation of otoliths as a one of the most sensitive organs in embryogenesis.


Assuntos
Acetazolamida/toxicidade , Inibidores da Anidrase Carbônica/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Sulfonamidas/toxicidade , Tiofenos/toxicidade , Peixe-Zebra/embriologia , Nadadeiras de Animais/embriologia , Animais , Apoptose , Cálcio/metabolismo , Cardiomegalia/embriologia , Orelha Interna/embriologia , Desenvolvimento Embrionário/efeitos dos fármacos , Etoxzolamida/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Membrana dos Otólitos/embriologia , Membrana dos Otólitos/metabolismo , Natação
3.
Gene ; 577(2): 265-74, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26692140

RESUMO

Zebrafish connexin 36.7 (cx36.7/ecx) has been identified as a key molecule in the early stages of heart development in this species. A defect in cx36.7 causes severe heart malformation due to the downregulation of nkx2.5 expression, a result which resembles congenital heart disease in humans. It has been shown that cx36.7 is expressed specifically in early developing heart cardiomyocytes. However, the regulatory mechanism for the cardiac-restricted expression of cx36.7 remains to be elucidated. In this study we isolated the 5'-flanking promoter region of the cx36.7 gene and characterized its promoter activity in zebrafish embryos. Deletion analysis showed that a 316-bp upstream region is essential for cardiac-restricted expression. This region contains four GATA elements, the proximal two of which are responsible for promoter activation in the embryonic heart and serve as binding sites for gata4. When gata4, gata5 and gata6 were simultaneously knocked down, the promoter activity was significantly decreased. Moreover, the deletion of the region between -316 and -133bp led to EGFP expression in the embryonic trunk muscle. The distal two GATA and A/T-rich elements in this region act as repressors of promoter activity in skeletal muscle. These results suggest that cx36.7 expression is directed by cardiac promoter activation via the two proximal GATA elements as well as by skeletal muscle-specific promoter repression via the two distal GATA elements.


Assuntos
Conexinas/genética , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Regiões Promotoras Genéticas , Proteínas de Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Conexinas/metabolismo , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Dados de Sequência Molecular , Músculo Esquelético/embriologia , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
4.
Front Physiol ; 4: 59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565095

RESUMO

Freshwater (FW) fishes actively absorb salt from their environment to tolerate low salinities. We previously reported that vacuolar-type H(+)-ATPase/mitochondrion-rich cells (H-MRCs) on the skin epithelium of zebrafish larvae (Danio rerio) are primary sites for Na(+) uptake. In this study, in an attempt to clarify the mechanism for the Na(+) uptake, we performed a systematic analysis of gene expression patterns of zebrafish carbonic anhydrase (CA) isoforms and found that, of 12 CA isoforms, CA2a and CA15a are highly expressed in H-MRCs at larval stages. The ca2a and ca15a mRNA expression were salinity-dependent; they were upregulated in 0.03 mM Na(+) water whereas ca15a but not ca2a was down-regulated in 70 mM Na(+) water. Immunohistochemistry demonstrated cytoplasmic distribution of CA2a and apical membrane localization of CA15a. Furthermore, cell surface immunofluorescence staining revealed external surface localization of CA15a. Depletion of either CA2a or CA15a expression by Morpholino antisense oligonucleotides resulted in a significant decrease in Na(+) accumulation in H-MRCs. An in situ proximity ligation assay demonstrated a very close association of CA2a, CA15a, Na(+)/H(+) exchanger 3b (Nhe3b), and Rhcg1 ammonia transporter in H-MRC. Our findings suggest that CA2a, CA15a, and Rhcg1 play a key role in Na(+)uptake under FW conditions by forming a transport metabolon with Nhe3b.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA