Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 843, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594062

RESUMO

Adaptive thermogenesis is essential for survival, and therefore is tightly regulated by a central neural circuit. Here, we show that microRNA (miR)-33 in the brain is indispensable for adaptive thermogenesis. Cold stress increases miR-33 levels in the hypothalamus and miR-33-/- mice are unable to maintain body temperature in cold environments due to reduced sympathetic nerve activity and impaired brown adipose tissue (BAT) thermogenesis. Analysis of miR-33f/f dopamine-ß-hydroxylase (DBH)-Cre mice indicates the importance of miR-33 in Dbh-positive cells. Mechanistically, miR-33 deficiency upregulates gamma-aminobutyric acid (GABA)A receptor subunit genes such as Gabrb2 and Gabra4. Knock-down of these genes in Dbh-positive neurons rescues the impaired cold-induced thermogenesis in miR-33f/f DBH-Cre mice. Conversely, increased gene dosage of miR-33 in mice enhances thermogenesis. Thus, miR-33 in the brain contributes to maintenance of BAT thermogenesis and whole-body metabolism via enhanced sympathetic nerve tone through suppressing GABAergic inhibitory neurotransmission. This miR-33-mediated neural mechanism may serve as a physiological adaptive defense mechanism for several stresses including cold stress.


Assuntos
MicroRNAs/metabolismo , Sistema Nervoso Simpático/fisiologia , Termogênese/genética , Tecido Adiposo Marrom/fisiologia , Animais , Temperatura Corporal/fisiologia , Peso Corporal , Encéfalo/metabolismo , Linhagem Celular , Temperatura Baixa , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Humanos , Integrases/metabolismo , Masculino , Camundongos , Camundongos Obesos , MicroRNAs/genética , Consumo de Oxigênio/fisiologia , Fenótipo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
2.
Commun Biol ; 3(1): 434, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792557

RESUMO

Recent high-throughput approaches have revealed a vast number of transcripts with unknown functions. Many of these transcripts are long noncoding RNAs (lncRNAs), and intergenic region-derived lncRNAs are classified as long intergenic noncoding RNAs (lincRNAs). Although Myosin heavy chain 6 (Myh6) encoding primary contractile protein is down-regulated in stressed hearts, the underlying mechanisms are not fully clarified especially in terms of lincRNAs. Here, we screen upregulated lincRNAs in pressure overloaded hearts and identify a muscle-abundant lincRNA termed Lionheart. Compared with controls, deletion of the Lionheart in mice leads to decreased systolic function and a reduction in MYH6 protein levels following pressure overload. We reveal decreased MYH6 results from an interaction between Lionheart and Purine-rich element-binding protein A after pressure overload. Furthermore, human LIONHEART levels in left ventricular biopsy specimens positively correlate with cardiac systolic function. Our results demonstrate Lionheart plays a pivotal role in cardiac remodeling via regulation of MYH6.


Assuntos
Coração/fisiopatologia , Pressão , RNA Longo não Codificante/genética , Sístole/genética , Animais , Biópsia , Dependovirus/metabolismo , Ventrículos do Coração/ultraestrutura , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/metabolismo , Ratos , Regulação para Cima/genética
3.
EMBO Rep ; 21(4): e48389, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32147946

RESUMO

The Hippo signaling pathway is involved in the pathophysiology of various cardiovascular diseases. Yes-associated protein (YAP) and transcriptional enhancer activator domain (TEAD) transcriptional factors, the main transcriptional complex of the Hippo pathway, were recently identified as modulators of phenotypic switching of vascular smooth muscle cells (VSMCs). However, the intrinsic regulator of YAP/TEAD-mediated gene expressions involved in vascular pathophysiology remains to be elucidated. Here, we identified Homeobox A4 (HOXA4) as a potent repressor of YAP/TEAD transcriptional activity using lentiviral shRNA screen. Mechanistically, HOXA4 interacts with TEADs and attenuates YAP/TEAD-mediated transcription by competing with YAP for TEAD binding. We also clarified that the expression of HOXA4 is relatively abundant in the vasculature, especially in VSMCs. In vitro experiments in human VSMCs showed HOXA4 maintains the differentiation state of VSMCs via inhibition of YAP/TEAD-induced phenotypic switching. We generated Hoxa4-deficient mice and confirmed the downregulation of smooth muscle-specific contractile genes and the exacerbation of vascular remodeling after carotid artery ligation in vivo. Our results demonstrate that HOXA4 is a repressor of VSMC phenotypic switching by inhibiting YAP/TEAD-mediated transcription.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Remodelação Vascular , Animais , Camundongos , Miócitos de Músculo Liso , Transdução de Sinais
4.
JACC Basic Transl Sci ; 4(6): 701-714, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31709319

RESUMO

No effective treatment is yet available to reduce infarct size and improve clinical outcomes after acute myocardial infarction by enhancing early reperfusion therapy using primary percutaneous coronary intervention. The study showed that Kyoto University Substance 121 (KUS121) reduced endoplasmic reticulum stress, maintained adenosine triphosphate levels, and ameliorated the infarct size in a murine cardiac ischemia and reperfusion injury model. The study confirmed the cardioprotective effect of KUS121 in a porcine ischemia and reperfusion injury model. These findings confirmed that KUS121 is a promising novel therapeutic agent for myocardial infarction in conjunction with primary percutaneous coronary intervention.

5.
J Am Heart Assoc ; 8(13): e012609, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31242815

RESUMO

Background Micro RNA (miR)-33 targets cholesterol transporter ATP -binding cassette protein A1 and other antiatherogenic targets and contributes to atherogenic progression. Its inhibition or deletion is known to result in the amelioration of atherosclerosis in mice. However, mice lack the other member of the miR-33 family, miR-33b, which exists in humans and other large mammals. Thus, precise evaluation and comparison of the responsibilities of these 2 miRs during the progression of atherosclerosis has not been reported, although they are essential. Methods and Results In this study, we performed a comprehensive analysis of the difference between the function of miR-33a and miR-33b using genetically modified mice. We generated 4 strains with or without miR-33a and miR-33b. Comparison between mice with only miR-33a (wild-type mice) and mice with only miR-33b (miR-33a-/-/miR-33b+/+) revealed the dominant expression of miR-33b in the liver. To evaluate the whole body atherogenic potency of miR-33a and miR-33b, we developed apolipoprotein E-deficient/miR-33a+/+/miR-33b-/- mice and apolipoprotein E-deficient/miR-33a-/-/miR-33b+/+ mice. With a high-fat and high-cholesterol diet, the apolipoprotein E-deficient/miR-33a-/-/miR-33b+/+ mice developed increased atherosclerotic plaque versus apolipoprotein E-deficient/miR-33a+/+/miR-33b-/- mice, in line with the predominant expression of miR-33b in the liver and worsened serum cholesterol profile. By contrast, a bone marrow transplantation study showed no significant difference, which was consistent with the relevant expression levels of miR-33a and miR-33b in bone marrow cells. Conclusions The miR-33 family exhibits differences in distribution and regulation and particularly in the progression of atherosclerosis; miR-33b would be more potent than miR-33a.


Assuntos
Aterosclerose/genética , Hepatócitos/metabolismo , Fígado/metabolismo , MicroRNAs/genética , Placa Aterosclerótica/genética , Animais , Apolipoproteínas B/metabolismo , Transplante de Medula Óssea , Colesterol/metabolismo , Colesterol na Dieta , Dieta Hiperlipídica , Progressão da Doença , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE , Camundongos Transgênicos , MicroRNAs/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA