Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(19): 4244-4251.e4, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689064

RESUMO

The symbioses that animals form with bacteria play important roles in health and disease, but the molecular details underlying how bacterial symbionts initially assemble within a host remain unclear.1,2,3 The bioluminescent bacterium Vibrio fischeri establishes a light-emitting symbiosis with the Hawaiian bobtail squid Euprymna scolopes by colonizing specific epithelium-lined crypt spaces within a symbiotic organ called the light organ.4 Competition for these colonization sites occurs between different strains of V. fischeri, with the lancet-like type VI secretion system (T6SS) facilitating strong competitive interference that results in strain incompatibility within a crypt space.5,6 Although recent studies have identified regulators of this T6SS, how the T6SS is controlled as symbionts assemble in vivo remains unknown.7,8 Here, we show that T6SS activity is suppressed by N-octanoyl-L-homoserine lactone (C8 HSL), which is a signaling molecule that facilitates quorum sensing in V. fischeri and is important for efficient symbiont assembly.9,10 We find that this signaling depends on the quorum-sensing regulator LitR, which lowers expression of the needle subunit Hcp, a key component of the T6SS, by repressing transcription of the T6SS regulator VasH. We show that LitR-dependent quorum sensing inhibits strain incompatibility within the squid light organ. Collectively, these results provide new insights into the mechanisms by which regulatory networks that promote symbiosis also control competition among symbionts, which in turn may affect the overall symbiont diversity that assembles within a host.

2.
Lab Anim Res ; 39(1): 17, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507806

RESUMO

BACKGROUND: The symbiosis between the Hawaiian bobtail squid Euprymna scolopes and bacterium Vibrio fischeri serves as a model for investigating the molecular mechanisms that promote the initial formation of animal-bacterial symbioses. Research with this system frequently depends on freshly hatched E. scolopes, but the husbandry factors that promote hatchling production in a mariculture facility remain underreported. Here we report on the reproductive performance of E. scolopes in response to decreased mating frequency. RESULTS: One animal cohort was maintained in a mariculture facility for 107 days, with females assigned to either a control group (mating once every 14 days) or an experimental group (mating once every 21 days). No differences between the groups were observed in survival, the number of egg clutches laid, or hatchling counts. Each group featured multiple females that were hyper-reproductive, i.e., they generated more than 8 egg clutches while in captivity. Examination of the distributions for daily hatchling counts of individual egg clutches revealed significant variation in the hatching patterns among clutches that was independent of mating frequency. Finally, an assessment of hatchling production showed that 93.5% of total hatchlings produced by the cohort were derived from egg clutches laid within the first 70 days. CONCLUSIONS: These results suggest a lower mating frequency does not impede hatchling production. Furthermore, the variation in hatchling production among egg clutches provides new insight into the reproductive performance of E. scolopes as a lab animal for microbiology research.

3.
PLoS One ; 18(7): e0287519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440554

RESUMO

Most animals establish long-term symbiotic associations with bacteria that are critical for normal host physiology. The symbiosis that forms between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri serves as an important model system for investigating the molecular mechanisms that promote animal-bacterial symbioses. E. scolopes hatch from their eggs uncolonized, which has led to the development of squid-colonization assays that are based on introducing culture-grown V. fischeri cells to freshly hatched juvenile squid. Recent studies have revealed that strains often exhibit large differences in how they establish symbiosis. Therefore, we sought to develop a simplified and reproducible protocol that permits researchers to determine appropriate inoculum levels and provides a platform to standardize the assay across different laboratories. In our protocol, we adapt a method commonly used for evaluating the infectivity of pathogens to quantify the symbiotic capacity of V. fischeri strains. The resulting metric, the symbiotic dose-50 (SD50), estimates the inoculum level that is necessary for a specific V. fischeri strain to establish a light-emitting symbiosis. Relative to other protocols, our method requires 2-5-fold fewer animals. Furthermore, the power analysis presented here suggests that the protocol can detect up to a 3-fold change in the SD50 between different strains.


Assuntos
Aliivibrio fischeri , Vibrio , Animais , Aliivibrio fischeri/fisiologia , Simbiose/fisiologia , Decapodiformes/fisiologia , Havaí
4.
Elife ; 122023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145113

RESUMO

To colonize a host, bacteria depend on an ensemble of signaling systems to convert information about the various environments encountered within the host into specific cellular activities. How these signaling systems coordinate transitions between cellular states in vivo remains poorly understood. To address this knowledge gap, we investigated how the bacterial symbiont Vibrio fischeri initially colonizes the light organ of the Hawaiian bobtail squid Euprymna scolopes. Previous work has shown that the small RNA Qrr1, which is a regulatory component of the quorum-sensing system in V. fischeri, promotes host colonization. Here, we report that transcriptional activation of Qrr1 is inhibited by the sensor kinase BinK, which suppresses cellular aggregation by V. fischeri prior to light organ entry. We show that Qrr1 expression depends on the alternative sigma factor σ54 and the transcription factors LuxO and SypG, which function similar to an OR logic gate, thereby ensuring Qrr1 is expressed during colonization. Finally, we provide evidence that this regulatory mechanism is widespread throughout the Vibrionaceae family. Together, our work reveals how coordination between the signaling pathways underlying aggregation and quorum-sensing promotes host colonization, which provides insight into how integration among signaling systems facilitates complex processes in bacteria.


Assuntos
Proteínas de Ligação a DNA , Simbiose , Animais , Proteínas de Ligação a DNA/metabolismo , Aliivibrio fischeri/genética , Percepção de Quorum , Fatores de Transcrição/metabolismo , Decapodiformes/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Microbiology (Reading) ; 169(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809081

RESUMO

The mutualistic symbiosis between the Hawaiian bobtail squid Euprymna scolopes and the marine bacterium Vibrio fischeri is a powerful experimental system for determining how intercellular interactions impact animal-bacterial associations. In nature, this symbiosis features multiple strains of V. fischeri within each adult animal, which indicates that different strains initially colonize each squid. Various studies have demonstrated that certain strains of V. fischeri possess a type-VI secretion system (T6SS), which can inhibit other strains from establishing symbiosis within the same host habitat. The T6SS is a bacterial melee weapon that enables a cell to kill adjacent cells by translocating toxic effectors via a lancet-like apparatus. This review describes the progress that has been made in understanding the factors that govern the structure and expression of the T6SS in V. fischeri and its effect on the symbiosis.


Assuntos
Sistemas de Secreção Tipo VI , Vibrio , Animais , Aliivibrio fischeri , Sistemas de Secreção Tipo VI/metabolismo , Simbiose , Decapodiformes/microbiologia , Ecossistema
7.
Isr J Chem ; 63(5-6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38524670

RESUMO

Quorum sensing is an intercellular signaling mechanism that enables bacterial cells to coordinate population-level behaviors. How quorum sensing functions in natural habitats remains poorly understood. Vibrio fischeri is a bacterial symbiont of the Hawaiian bobtail squid Euprymna scolopes and depends on LuxI/LuxR quorum sensing to produce the symbiotic trait of bioluminescence. A previous study demonstrated that animals emit light when co-colonized by a Δlux mutant, which lacks several genes within the lux operon that are necessary for bioluminescence production, and a LuxI- mutant, which cannot synthesize the quorum signaling molecule N-3-oxohexanoyl-homoserine lactone. Here, we build upon that observation and show that populations of LuxI- feature elevated promoter activity for the lux operon. We find that population structures comprising of Δlux and LuxI- are attenuated within the squid, but a wild-type strain enables the LuxI- strain type to be maintained in vivo. These experimental results support a model of interpopulation signaling, which provides basic insight into how quorum sensing functions within the natural habitats found within a host.

8.
Lab Anim Res ; 38(1): 25, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908064

RESUMO

BACKGROUND: The Hawaiian bobtail squid Euprymna scolopes hosts various marine bacterial symbionts, and these symbioses have served as models for the animal-microbe relationships that are important for host health. Within a light organ, E. scolopes harbors populations of the bacterium Vibrio fischeri, which produce low levels of bioluminescence that the squid uses for camouflage. The symbiosis is initially established after a juvenile squid hatches from its egg and acquires bacterial symbionts from the ambient marine environment. The relative ease with which a cohort of wild-caught E. scolopes can be maintained in a mariculture facility has facilitated over 3 decades of research involving juvenile squid. However, because E. scolopes is native to the Hawaiian archipelago, their transport from Hawaii to research facilities often represents a stress that has the potential to impact their physiology. RESULTS: Here, we describe animal survival and reproductive capacity associated with a cohort of squid assembled from two shipments with markedly different transit times. We found that the lower juvenile squid counts generated by animals with the longer transit time were not due to the discrepancy in shipment but instead to fewer female squid that produced egg clutches at an elevated rate, which we term hyper-reproductivity. We find that hyper-reproductive females were responsible for 58% of the egg clutches laid. CONCLUSIONS: The significance of these findings for E. scolopes biology and husbandry is discussed, thereby providing a platform for future investigation and further development of this cephalopod as a valuable lab animal for microbiology research.

9.
Mol Microbiol ; 116(3): 926-942, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34212439

RESUMO

Sulfur is in cellular components of bacteria and is, therefore, an element necessary for growth. However, mechanisms by which bacteria satisfy their sulfur needs within a host are poorly understood. Vibrio fischeri is a bacterial symbiont that colonizes, grows, and produces bioluminescence within the light organ of the Hawaiian bobtail squid, which provides an experimental platform for investigating sulfur acquisition in vivo. Like other γ-proteobacteria, V. fischeri fuels sulfur-dependent anabolic processes with intracellular cysteine. Within the light organ, the abundance of a ΔcysK mutant, which cannot synthesize cysteine through sulfate assimilation, is attenuated, suggesting sulfate import is necessary for V. fischeri to establish symbiosis. Genes encoding sulfate-import systems of other bacteria that assimilate sulfate were not identified in the V. fischeri genome. A transposon mutagenesis screen implicated YfbS as a sulfate importer. YfbS is necessary for growth on sulfate and in the marine environment. During symbiosis, a ΔyfbS mutant is attenuated and strongly expresses sulfate-assimilation genes, which is a phenotype associated with sulfur-starved cells. Together, these results suggest V. fischeri imports sulfate via YfbS within the squid light organ, which provides insight into the molecular mechanisms by which bacteria harvest sulfur in vivo.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Proteínas de Membrana Transportadoras/genética , Sulfatos/metabolismo , Enxofre/metabolismo , Simbiose , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cisteína/metabolismo , Interações entre Hospedeiro e Microrganismos , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese , Mutação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA