Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 14(6): 230448, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862016

RESUMO

Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 ß-sandwich (ß1-ß7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands ß3 and ß4 ('motif Lß3ß4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lß3ß4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Porphyromonas gingivalis , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/metabolismo , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/química , Modelos Moleculares , Cristalografia por Raios X , Sequência de Aminoácidos , Sinais Direcionadores de Proteínas , Domínios Proteicos , Bacteroidetes/metabolismo , Bacteroidetes/genética , Tannerella forsythia/metabolismo , Tannerella forsythia/genética , Tannerella forsythia/química , Relação Estrutura-Atividade , Conformação Proteica
2.
FEBS Open Bio ; 14(3): 498-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308430

RESUMO

Periodontal disease is one of the most common forms of inflammation. It is currently diagnosed by observing symptoms such as gingival bleeding and attachment loss. However, the detection of biomarkers that precede such symptoms would allow earlier diagnosis and prevention. Aptamers are short oligonucleotides or peptides that fold into three-dimensional conformations conferring the ability to bind molecular targets with high affinity and specificity. Here we report the selection of aptamers that bind specifically to the bacterium Tannerella forsythia, a pathogen frequently associated with periodontal disease. Two aptamers with the highest affinity were examined in more detail, revealing that their binding is probably dependent on mirolysin, a surface-associated protease secreted by the T. forsythia type-9 secretion system. The aptamers showed minimal cross-reactivity to other periodontopathogens and are therefore promising leads for the development of new tools to study the composition of the periodontitis-associated dysbiotic bacteriome as well as inexpensive new diagnostic assays.


Assuntos
Periodontite , Tannerella forsythia , Humanos , Periodontite/diagnóstico , Periodontite/microbiologia , Inflamação , Peptídeo Hidrolases , Oligonucleotídeos
3.
mBio ; 14(5): e0098023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37750700

RESUMO

IMPORTANCE: Exclusively in the Bacteroidetes phylum, most proteins exported across the inner membrane via the Sec system and released into the periplasm by type I signal peptidase have N-terminal glutamine converted to pyroglutamate. The reaction is catalyzed by the periplasmic enzyme glutaminyl cyclase (QC), which is essential for the growth of Porphyromonas gingivalis and other periodontopathogens. Apparently, pyroglutamyl formation stabilizes extracytoplasmic proteins and/or protects them from proteolytic degradation in the periplasm. Given the role of P. gingivalis as the keystone pathogen in periodontitis, P. gingivalis QC is a promising target for the development of drugs to treat and/or prevent this highly prevalent chronic inflammatory disease leading to tooth loss and associated with severe systemic diseases.


Assuntos
Aminoaciltransferases , Periodontite , Humanos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Glutamina
4.
J Biol Chem ; 299(8): 104889, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37286041

RESUMO

Human neutrophil elastase (HNE) plays a pivotal role in innate immunity, inflammation, and tissue remodeling. Aberrant proteolytic activity of HNE contributes to organ destruction in various chronic inflammatory diseases including emphysema, asthma, and cystic fibrosis. Therefore, elastase inhibitors could alleviate the progression of these disorders. Here, we used the systematic evolution of ligands by exponential enrichment to develop ssDNA aptamers that specifically target HNE. We determined the specificity of the designed inhibitors and their inhibitory efficacy against HNE using biochemical and in vitro methods, including an assay of neutrophil activity. Our aptamers inhibit the elastinolytic activity of HNE with nanomolar potency and are highly specific for HNE and do not target other tested human proteases. As such, this study provides lead compounds suitable for the evaluation of their tissue-protective potential in animal models.


Assuntos
Aptâmeros de Nucleotídeos , Elastase de Leucócito , Inibidores de Serina Proteinase , Humanos , Fibrose Cística/tratamento farmacológico , Enfisema/tratamento farmacológico , Elastase de Leucócito/antagonistas & inibidores , Neutrófilos/efeitos dos fármacos , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/uso terapêutico , Sensibilidade e Especificidade , Ativação Enzimática/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Células Cultivadas
5.
Chem Sci ; 14(4): 869-888, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755705

RESUMO

Periodontopathogenic Tannerella forsythia uniquely secretes six peptidases of disparate catalytic classes and families that operate as virulence factors during infection of the gums, the KLIKK-peptidases. Their coding genes are immediately downstream of novel ORFs encoding the 98-132 residue potempins (Pot) A, B1, B2, C, D and E. These are outer-membrane-anchored lipoproteins that specifically and potently inhibit the respective downstream peptidase through stable complexes that protect the outer membrane of T. forsythia, as shown in vivo. Remarkably, PotA also contributes to bacterial fitness in vivo and specifically inhibits matrix metallopeptidase (MMP) 12, a major defence component of oral macrophages, thus featuring a novel and highly-specific physiological MMP inhibitor. Information from 11 structures and high-confidence homology models showed that the potempins are distinct ß-barrels with either a five-stranded OB-fold (PotA, PotC and PotD) or an eight-stranded up-and-down fold (PotE, PotB1 and PotB2), which are novel for peptidase inhibitors. Particular loops insert like wedges into the active-site cleft of the genetically-linked peptidases to specifically block them either via a new "bilobal" or the classic "standard" mechanism of inhibition. These results discover a unique, tightly-regulated proteolytic armamentarium for virulence and competence, the KLIKK-peptidase/potempin system.

6.
mBio ; 13(3): e0378721, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35491845

RESUMO

Porphyromonas gingivalis, a keystone pathogen in periodontitis (PD), produces cysteine proteases named gingipains (RgpA, RgpB, and Kgp), which strongly affect the host immune system. The range of action of gingipains is extended by their release as components of outer membrane vesicles, which efficiently diffuse into surrounding gingival tissues. However, away from the anaerobic environment of periodontal pockets, increased oxygen levels lead to oxidation of the catalytic cysteine residues of gingipains, inactivating their proteolytic activity. In this context, the influence of catalytically inactive gingipains on periodontal tissues is of significant interest. Here, we show that proteolytically inactive RgpA induced a proinflammatory response in both gingival keratinocytes and dendritic cells. Inactive RgpA is bound to the cell surface of gingival keratinocytes in the region of lipid rafts, and using affinity chromatography, we identified RgpA-interacting proteins, including epidermal growth factor receptor (EGFR). Next, we showed that EGFR interaction with inactive RgpA stimulated the expression of inflammatory cytokines. The response was mediated via the EGFR-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which when activated in the gingival tissue rich in dendritic cells in the proximity of the alveolar bone, may significantly contribute to bone resorption and the progress of PD. Taken together, these findings broaden our understanding of the biological role of gingipains, which in acting as proinflammatory factors in the gingival tissue, create a favorable milieu for the growth of inflammophilic pathobionts. IMPORTANCE Gingipain cysteine proteases are essential virulence factors of Porphyromonas gingivalis, an oral bacterium implicated in development of periodontitis. Gingipains diffusing from anaerobic periodontal pockets lose proteolytic activity in the oxygenated environment of gingival tissues. We found that despite the loss of activity, gingipains still elicit a strong inflammatory response, which may contribute to the progression of periodontitis and bone resorption. Moreover, we identified the host molecules utilized by the pathogen as receptors for proteolytically inactivated gingipains. The broad distribution of those receptors in human tissue suggests their involvement in systemic diseases associated with periodontal pathogens.


Assuntos
Reabsorção Óssea , Periodontite , Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/metabolismo , Receptores ErbB/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Imunidade , Bolsa Periodontal , Periodontite/microbiologia , Fosfatidilinositol 3-Quinases/metabolismo , Porphyromonas gingivalis/fisiologia
7.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593635

RESUMO

Porphyromonas gingivalis is a keystone pathogen of the human dysbiotic oral microbiome that causes severe periodontitis. It employs a type-IX secretion system (T9SS) to shuttle proteins across the outer membrane (OM) for virulence. Uniquely, T9SS cargoes carry a C-terminal domain (CTD) as a secretion signal, which is cleaved and replaced with anionic lipopolysaccharide by transpeptidation for extracellular anchorage to the OM. Both reactions are carried out by PorU, the only known dual-function, C-terminal signal peptidase and sortase. PorU is itself secreted by the T9SS, but its CTD is not removed; instead, intact PorU combines with PorQ, PorV, and PorZ in the OM-inserted "attachment complex." Herein, we revealed that PorU transits between active monomers and latent dimers and solved the crystal structure of the ∼260-kDa dimer. PorU has an elongated shape ∼130 Å in length and consists of seven domains. The first three form an intertwined N-terminal cluster likely engaged in substrate binding. They are followed by a gingipain-type catalytic domain (CD), two immunoglobulin-like domains (IGL), and the CTD. In the first IGL, a long "latency ß-hairpin" protrudes ∼30 Å from the surface to form an intermolecular ß-barrel with ß-strands from the symmetric CD, which is in a latent conformation. Homology modeling of the competent CD followed by in vivo validation through a cohort of mutant strains revealed that PorU is transported and functions as a monomer through a C690/H657 catalytic dyad. Thus, dimerization is an intermolecular mechanism for PorU regulation to prevent untimely activity until joining the attachment complex.


Assuntos
Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Proteínas de Membrana/genética , Porphyromonas gingivalis/genética , Serina Endopeptidases/genética , Catálise , Domínios Proteicos/genética , Transporte Proteico/genética , Virulência/genética
8.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622730

RESUMO

Cargo proteins of the type IX secretion system (T9SS) in human pathogens from the Bacteroidetes phylum invariably possess a conserved C-terminal domain (CTD) that functions as a signal for outer membrane (OM) translocation. In Porphyromonas gingivalis, the CTD of cargos is cleaved off after translocation, and anionic lipopolysaccharide (A-LPS) is attached. This transpeptidase reaction anchors secreted proteins to the OM. PorZ, a cell surface-associated protein, is an essential component of the T9SS whose function was previously unknown. We recently solved the crystal structure of PorZ and found that it consists of two ß-propeller moieties, followed by a CTD. In this study, we performed structure-based modeling, suggesting that PorZ is a carbohydrate-binding protein. Indeed, we found that recombinant PorZ specifically binds A-LPS in vitro Binding was blocked by monoclonal antibodies that specifically react with a phosphorylated branched mannan in the anionic polysaccharide (A-PS) component of A-LPS, but not with the core oligosaccharide or the lipid A endotoxin. Examination of A-LPS derived from a cohort of mutants producing various truncations of A-PS confirmed that the phosphorylated branched mannan is indeed the PorZ ligand. Moreover, purified recombinant PorZ interacted with the PorU sortase in an A-LPS-dependent manner. This interaction on the cell surface is crucial for the function of the "attachment complex" composed of PorU, PorZ, and the integral OM ß-barrel proteins PorV and PorQ, which is involved in posttranslational modification and retention of T9SS cargos on the bacterial surface.IMPORTANCE Bacteria have evolved multiple systems to transport effector proteins to their surface or into the surrounding milieu. These proteins have a wide range of functions, including attachment, motility, nutrient acquisition, and toxicity in the host. Porphyromonas gingivalis, the human pathogen responsible for severe gum diseases (periodontitis), uses a recently characterized type IX secretion system (T9SS) to translocate and anchor secreted virulence effectors to the cell surface. Anchorage is facilitated by sortase, an enzyme that covalently attaches T9SS cargo proteins to a unique anionic lipopolysaccharide (A-LPS) moiety of P. gingivalis Here, we show that the T9SS component PorZ interacts with sortase and specifically binds A-LPS. Binding is mediated by a phosphorylated branched mannan repeat in A-LPS polysaccharide. A-LPS-bound PorZ interacts with sortase with significantly higher affinity, facilitating modification of cargo proteins by the cell surface attachment complex of the T9SS.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Cisteína Endopeptidases/metabolismo , Lipopolissacarídeos/metabolismo , Peptidil Transferases/metabolismo , Porphyromonas gingivalis/genética , Sistemas de Secreção Bacterianos/genética , Peptidil Transferases/genética , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
9.
FASEB J ; 34(1): 619-630, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914706

RESUMO

Tannerella forsythia is a periodontopathogen that expresses miropin, a protease inhibitor in the serpin superfamily. In this study, we show that miropin is also a specific and efficient inhibitor of plasmin; thus, it represents the first proteinaceous plasmin inhibitor of prokaryotic origin described to date. Miropin inhibits plasmin through the formation of a stable covalent complex triggered by cleavage of the Lys368-Thr369 (P2-P1) reactive site bond with a stoichiometry of inhibition of 3.8 and an association rate constant (kass) of 3.3 × 105 M-1s-1. The inhibition of the fibrinolytic activity of plasmin was nearly as effective as that exerted by α2-antiplasmin. Miropin also acted in vivo by reducing blood loss in a mice tail bleeding assay. Importantly, intact T. forsythia cells or outer membrane vesicles, both of which carry surface-associated miropin, strongly inhibited plasmin. In intact bacterial cells, the antiplasmin activity of miropin protects envelope proteins from plasmin-mediated degradation. In summary, in the environment of periodontal pockets, which are bathed in gingival crevicular fluid consisting of 70% of blood plasma, an abundance of T. forsythia in the bacterial biofilm can cause local inhibition of fibrinolysis, which could have possible deleterious effects on the tooth-supporting structures of the periodontium.


Assuntos
Antifibrinolíticos/farmacologia , Fibrinólise/efeitos dos fármacos , Doenças Periodontais/tratamento farmacológico , Serpinas/efeitos dos fármacos , Animais , Bactérias/metabolismo , Domínio Catalítico , Feminino , Fibrinolisina/metabolismo , Fibrinolisina/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Inibidores de Proteases/farmacologia , Serpinas/metabolismo
10.
Biochimie ; 166: 161-172, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31212040

RESUMO

Porphyromonas gingivalis uses a type IX secretion system (T9SS) to deliver more than 30 proteins to the bacterial surface using a conserved C-terminal domain (CTD) as an outer membrane translocation signal. On the surface, the CTD is cleaved and an anionic lipopolysaccharide (A-PLS) is attached by PorU sortase. Among T9SS cargo proteins are cysteine proteases, gingipains, which are secreted as inactive zymogens requiring removal of an inhibiting N-terminal prodomain (PD) for activation. Here, we have shown that the gingipain proRgpB isolated from the periplasm of a T9SS-deficient P. gingivalis strain was stable and did not undergo autocatalytic activation. Addition of purified, active RgpA or RgpB, but not Lys-specific Kgp, efficiently cleaved the PD of proRgpB but catalytic activity remained inhibited because of inhibition of the catalytic domain in trans by the PD. In contrast, active RgpB was generated from the zymogen, although at a slow rate, by gingipain-null P. gingivalis lysate or intact bacterial cell suspension. This activation was dependent on the presence of the PorU sortase. Interestingly, maturation of proRgpB with the catalytic cysteine residues mutated to Ala expressed in the ΔRgpA mutant strain was indistinguishable from that in the parental strain. Cumulatively, this suggests that PorU not only has sortase activity but is also engaged in activation of gingipain zymogens on the bacterial cell surface.


Assuntos
Precursores Enzimáticos/metabolismo , Cisteína Endopeptidases Gingipaínas/química , Cisteína Endopeptidases Gingipaínas/metabolismo , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Processamento de Proteína Pós-Traducional , Via Secretória
11.
Front Microbiol ; 9: 230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29545777

RESUMO

Bacteroidetes feature prominently in the human microbiome, as major colonizers of the gut and clinically relevant pathogens elsewhere. Here, we reveal a new Bacteroidetes specific feature in the otherwise widely conserved Sec/SPI (Sec translocase/signal peptidase I) pathway. In Bacteroidetes, but not the entire FCB group or related phyla, signal peptide cleavage exposes N-terminal glutamine residues in most SPI substrates. Reanalysis of published mass spectrometry data for five Bacteroidetes species shows that the newly exposed glutamines are cyclized to pyroglutamate (also termed 5-oxoproline) residues. Using the dental pathogen Porphyromonas gingivalis as a model, we identify the PG2157 (also called PG_RS09565, Q7MT37) as the glutaminyl cyclase in this species, and map the catalytic activity to the periplasmic face of the inner membrane. Genetic manipulations that alter the glutamine residue immediately after the signal peptide in the pre-pro-forms of the gingipains affect the extracellular proteolytic activity of RgpA, but not RgpB and Kgp. Glutamine statistics, mass spectrometry data and the mutagenesis results show that the N-terminal glutamine residues or their pyroglutamate cyclization products do not act as generic sorting signals.

12.
J Biol Chem ; 292(14): 5724-5735, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28196869

RESUMO

Skewing of the human oral microbiome causes dysbiosis and preponderance of bacteria such as Porphyromonas gingivalis, the main etiological agent of periodontitis. P. gingivalis secretes proteolytic gingipains (Kgp and RgpA/B) as zymogens inhibited by a pro-domain that is removed during extracellular activation. Unraveling the molecular mechanism of Kgp zymogenicity is essential to design inhibitors blocking its activity. Here, we found that the isolated 209-residue Kgp pro-domain is a boomerang-shaped all-ß protein similar to the RgpB pro-domain. Using composite structural information of Kgp and RgpB, we derived a plausible homology model and mechanism of Kgp-regulating zymogenicity. Accordingly, the pro-domain would laterally attach to the catalytic moiety in Kgp and block the active site through an exposed inhibitory loop. This loop features a lysine (Lys129) likely occupying the S1 specificity pocket and exerting latency. Lys129 mutation to glutamate or arginine led to misfolded protein that was degraded in vivo Mutation to alanine gave milder effects but still strongly diminished proteolytic activity, without affecting the subcellular location of the enzyme. Accordingly, the interactions of Lys129 within the S1 pocket are also essential for correct folding. Uniquely for gingipains, the isolated Kgp pro-domain dimerized through an interface, which partially overlapped with that between the catalytic moiety and the pro-domain within the zymogen, i.e. both complexes are mutually exclusive. Thus, pro-domain dimerization, together with partial rearrangement of the active site upon activation, explains the lack of inhibition of the pro-domain in trans. Our results reveal that the specific latency mechanism of Kgp differs from those of Rgps.


Assuntos
Adesinas Bacterianas/química , Cisteína Endopeptidases/química , Precursores Enzimáticos/química , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/patogenicidade , Fatores de Virulência/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Infecções por Bacteroidaceae/enzimologia , Infecções por Bacteroidaceae/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Cisteína Endopeptidases Gingipaínas , Gengivite/enzimologia , Gengivite/genética , Humanos , Microbiota , Boca/microbiologia , Porphyromonas gingivalis/genética , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade , Fatores de Virulência/metabolismo
13.
Arch Oral Biol ; 75: 81-88, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27825675

RESUMO

OBJECTIVE: To evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins. METHODS: Dentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4h and 24h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured. RESULTS: Coating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24h (p=0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24h (p=0.026 uncoated, p=0.009 with serum). CONCLUSIONS: The present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Corrosão Dentária , Dentina/microbiologia , Porphyromonas gingivalis/fisiologia , Albumina Sérica Humana/farmacologia , Tannerella forsythia/metabolismo , Titânio , Adesinas Bacterianas/metabolismo , Contagem de Colônia Microbiana , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Imunoglobulina G , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Inibidores de Proteases , RNA Mensageiro/metabolismo , Soro , Propriedades de Superfície , Tannerella forsythia/enzimologia , Tannerella forsythia/crescimento & desenvolvimento
14.
Sci Rep ; 6: 37708, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27883039

RESUMO

Porphyromonas gingivalis is a member of the human oral microbiome abundant in dysbiosis and implicated in the pathogenesis of periodontal (gum) disease. It employs a newly described type-IX secretion system (T9SS) for secretion of virulence factors. Cargo proteins destined for secretion through T9SS carry a recognition signal in the conserved C-terminal domain (CTD), which is removed by sortase PorU during translocation. Here, we identified a novel component of T9SS, PorZ, which is essential for surface exposure of PorU and posttranslational modification of T9SS cargo proteins. These include maturation of enzyme precursors, CTD removal and attachment of anionic lipopolysaccharide for anchorage in the outer membrane. The crystal structure of PorZ revealed two ß-propeller domains and a C-terminal ß-sandwich domain, which conforms to the canonical CTD architecture. We further documented that PorZ is itself transported to the cell surface via T9SS as a full-length protein with its CTD intact, independently of the presence or activity of PorU. Taken together, our results shed light on the architecture and possible function of a novel component of the T9SS. Knowledge of how T9SS operates will contribute to our understanding of protein secretion as part of host-microbiome interactions by dysbiotic members of the human oral cavity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Microbiota , Boca/microbiologia , Porphyromonas gingivalis/metabolismo , Adesinas Bacterianas/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Escherichia coli/metabolismo , Deleção de Genes , Cisteína Endopeptidases Gingipaínas , Humanos , Fenótipo , Pigmentação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Desiminases de Arginina em Proteínas/metabolismo , Frações Subcelulares/metabolismo
15.
Sci Rep ; 6: 23123, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27005013

RESUMO

In the recently characterized Type IX Secretion System (T9SS), the conserved C-terminal domain (CTD) in secreted proteins functions as an outer membrane translocation signal for export of virulence factors to the cell surface in the Gram-negative Bacteroidetes phylum. In the periodontal pathogen Porphyromonas gingivalis, the CTD is cleaved off by PorU sortase in a sequence-independent manner, and anionic lipopolysaccharide (A-LPS) is attached to many translocated proteins, thus anchoring them to the bacterial surface. Here, we solved the atomic structure of the CTD of gingipain B (RgpB) from P. gingivalis, alone and together with a preceding immunoglobulin-superfamily domain (IgSF). The CTD was found to possess a typical Ig-like fold encompassing seven antiparallel ß-strands organized in two ß-sheets, packed into a ß-sandwich structure that can spontaneously dimerise through C-terminal strand swapping. Small angle X-ray scattering (SAXS) revealed no fixed orientation of the CTD with respect to the IgSF. By introducing insertion or substitution of residues within the inter-domain linker in the native protein, we were able to show that despite the region being unstructured, it nevertheless is resistant to general proteolysis. These data suggest structural motifs located in the two adjacent Ig-like domains dictate the processing of CTDs by the T9SS secretion pathway.


Assuntos
Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/metabolismo , Imunoglobulinas/metabolismo , Sinais de Exportação Nuclear/genética , Porphyromonas gingivalis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Sítios de Ligação , Sequência Conservada , Modelos Moleculares , Porphyromonas gingivalis/química , Porphyromonas gingivalis/genética , Estrutura Secundária de Proteína , Transporte Proteico , Espalhamento a Baixo Ângulo
16.
Sci Rep ; 5: 11969, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26132828

RESUMO

Citrullination is a post-translational modification of higher organisms that deiminates arginines in proteins and peptides. It occurs in physiological processes but also pathologies such as multiple sclerosis, fibrosis, Alzheimer's disease and rheumatoid arthritis (RA). The reaction is catalyzed by peptidylarginine deiminases (PADs), which are found in vertebrates but not in lower organisms. RA has been epidemiologically associated with periodontal disease, whose main infective agent is Porphyromonas gingivalis. Uniquely among microbes, P. gingivalis secretes a PAD, termed PPAD (Porphyromonas peptidylarginine deiminase), which is genetically unrelated to eukaryotic PADs. Here, we studied function of PPAD and its substrate-free, substrate-complex, and substrate-mimic-complex structures. It comprises a flat cylindrical catalytic domain with five-fold α/ß-propeller architecture and a C-terminal immunoglobulin-like domain. The PPAD active site is a funnel located on one of the cylinder bases. It accommodates arginines from peptide substrates after major rearrangement of a "Michaelis loop" that closes the cleft. The guanidinium and carboxylate groups of substrates are tightly bound, which explains activity of PPAD against arginines at C-termini but not within peptides. Catalysis is based on a cysteine-histidine-asparagine triad, which is shared with human PAD1-PAD4 and other guanidino-group modifying enzymes. We provide a working mechanism hypothesis based on 18 structure-derived point mutants.


Assuntos
Proteínas de Bactérias/química , Hidrolases/química , Porphyromonas gingivalis/enzimologia , Fatores de Virulência/química , Domínio Catalítico , Citrulina/química , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Desiminases de Arginina em Proteínas , Homologia Estrutural de Proteína
17.
J Immunol ; 195(5): 2231-40, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209620

RESUMO

Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. In this study, we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin exhibited a strong effect on all complement pathways. It inhibited the classical and lectin complement pathways due to efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4, whereas inhibition of the alternative pathway was caused by degradation of C5. This specificity toward complement largely resembled the activity of a previously characterized metalloproteinase of T. forsythia, karilysin. Interestingly, mirolysin released the biologically active C5a peptide in human plasma and induced migration of neutrophils. Importantly, we demonstrated that combination of mirolysin with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further evidence for the synergistic inactivation of complement by these metalloproteinases. Taken together, our findings on interactions of mirolysin with complement significantly add to the understanding of immune evasion strategies of T. forsythia and expand the knowledge on molecular mechanisms driving pathogenic events in the infected periodontium.


Assuntos
Proteínas de Bactérias/imunologia , Infecções por Bacteroides/imunologia , Bacteroides/imunologia , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Metaloproteases/imunologia , Periodontite/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/genética , Bacteroides/fisiologia , Infecções por Bacteroides/sangue , Infecções por Bacteroides/microbiologia , Movimento Celular/imunologia , Via Alternativa do Complemento/imunologia , Via Clássica do Complemento/imunologia , Lectina de Ligação a Manose da Via do Complemento/imunologia , Hemólise/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/imunologia , Metaloproteinases da Matriz/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Viabilidade Microbiana/genética , Viabilidade Microbiana/imunologia , Mutação , Neutrófilos/imunologia , Neutrófilos/metabolismo , Periodontite/sangue , Periodontite/microbiologia , Ovinos
18.
Front Microbiol ; 6: 312, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954253

RESUMO

Comparative genomics of virulent Tannerella forsythia ATCC 43037 and a close health-associated relative, Tannerella BU063, revealed, in the latter, the absence of an entire array of genes encoding putative secretory proteases that possess a nearly identical C-terminal domain (CTD) that ends with a -Lys-Leu-Ile-Lys-Lys motif. This observation suggests that these proteins, referred to as KLIKK proteases, may function as virulence factors. Re-sequencing of the loci of the KLIKK proteases found only six genes grouped in two clusters. All six genes were expressed by T. forsythia in routine culture conditions, although at different levels. More importantly, a transcript of each gene was detected in gingival crevicular fluid (GCF) from periodontitis sites infected with T. forsythia indicating that the proteases are expressed in vivo. In each protein, a protease domain was flanked by a unique N-terminal profragment and a C-terminal extension ending with the CTD. Partially purified recombinant proteases showed variable levels of proteolytic activity in zymography gels and toward protein substrates, including collagen, gelatin, elastin, and casein. Taken together, these results indicate that the pathogenic strain of T. forsythia secretes active proteases capable of degrading an array of host proteins, which likely represents an important pathogenic feature of this bacterium.

19.
J Innate Immun ; 7(2): 187-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25358860

RESUMO

After phagocytosis by macrophages, Staphylococcus aureus evades killing in an α-toxin-dependent manner, and then prevents apoptosis of infected cells by upregulating expression of antiapoptotic genes like MCL-1 (myeloid cell leukemia-1). Here, using purified α-toxin and a set of hla-deficient strains, we show that α-toxin is critical for the induction of MCL-1 expression and the cytoprotection of infected macrophages. Extracellular or intracellular treatment of macrophages with α-toxin alone did not induce cytoprotection conferred by increased Mcl-1, suggesting that the process is dependent on the production of α-toxin by intracellular bacteria. The increased expression of MCL-1 in infected cells was associated with enhanced NFκB activation, and subsequent IL-6 secretion. This effect was only partially inhibited by blocking TLR2, which suggests the participation of intracellular receptors in the specific recognition of S. aureus strains secreting α-toxin. Thus, S. aureus recognition by intracellular receptors and/or activation of downstream pathways leading to Mcl-1 expression is facilitated by α-toxin released by intracellular bacteria which permeabilize phagosomes, ensuring pathogen access to the cytoplasmatic compartment. Given that the intracellular survival of S. aureus depends on α-toxin, we propose a novel role for this agent in the protection of the intracellular niche, and further dissemination of staphylococci by infected macrophages.


Assuntos
Toxinas Bacterianas/metabolismo , Citoproteção , Proteínas Hemolisinas/metabolismo , Macrófagos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Toxinas Bacterianas/genética , Células Cultivadas , Proteínas Hemolisinas/genética , Humanos , Evasão da Resposta Imune , Interleucina-6/metabolismo , Macrófagos/microbiologia , Mutação/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , NF-kappa B/metabolismo , Fagocitose , Infecções Estafilocócicas/transmissão , Staphylococcus aureus/patogenicidade , Receptor 2 Toll-Like/metabolismo , Fatores de Virulência
20.
J Biol Chem ; 290(1): 658-70, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25389290

RESUMO

All prokaryotic genes encoding putative serpins identified to date are found in environmental and commensal microorganisms, and only very few prokaryotic serpins have been investigated from a mechanistic standpoint. Herein, we characterized a novel serpin (miropin) from the human pathogen Tannerella forsythia, a bacterium implicated in initiation and progression of human periodontitis. In contrast to other serpins, miropin efficiently inhibited a broad range of proteases (neutrophil and pancreatic elastases, cathepsin G, subtilisin, and trypsin) with a stoichiometry of inhibition of around 3 and second-order association rate constants that ranged from 2.7 × 10(4) (cathepsin G) to 7.1 × 10(5) m(-1)s(-1) (subtilisin). Inhibition was associated with the formation of complexes that were stable during SDS-PAGE. The unusually broad specificity of miropin for target proteases is achieved through different active sites within the reactive center loop upstream of the P1-P1' site, which was predicted from an alignment of the primary structure of miropin with those of well studied human and prokaryotic serpins. Thus, miropin is unique among inhibitory serpins, and it has apparently evolved the ability to inhibit a multitude of proteases at the expense of a high stoichiometry of inhibition and a low association rate constant. These characteristics suggest that miropin arose as an adaptation to the highly proteolytic environment of subgingival plaque, which is exposed continually to an array of host proteases in the inflammatory exudate. In such an environment, miropin may function as an important virulence factor by protecting bacterium from the destructive activity of neutrophil serine proteases. Alternatively, it may act as a housekeeping protein that regulates the activity of endogenous T. forsythia serine proteases.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/química , Inibidores de Serina Proteinase/química , Serpinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Catepsina G/antagonistas & inibidores , Catepsina G/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/metabolismo , Dados de Sequência Molecular , Bolsa Periodontal/microbiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/metabolismo , Serpinas/genética , Serpinas/metabolismo , Especificidade por Substrato , Subtilisina/antagonistas & inibidores , Subtilisina/metabolismo , Termodinâmica , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA