Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 92: 133-139, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35772585

RESUMO

This study aimed to analyze the time-course of the physical properties of the psoas major muscle (PM) before and after exercise using magnetic resonance elastography (MRE). Muscle stiffness is one of the important properties associated with muscle function. However, there was no research on the stiffness of the PM after exercise. In this study, we investigated time-course changes of the shear modulus of the PM after exercise. Furthermore, T2 values and apparent diffusion coefficient (ADC), as the additional information associated with muscular physical properties, were also measured simultaneously. Healthy young male volunteers were recruited in this study (n = 9) and they were required to perform a hand-to-knee isometric and unilateral exercise (left side). At each time-point before and after exercise, a set of 3 types of MR scans to measure multiple physical properties of the PM [shear modulus (MRE), T2 values, and ADC] were repeatedly taken. On day 1, a single set MR scan was taken before exercise (pre-exercise MR scan), and 6 sets MR scans were taken (5.5 to 38.0 min after exercise). After about 10-min rest (46.0 to 56.0 min after exercise), 4 sets MR scans were taken (57.5 to 77.0 min after exercise). About 10-min rest was taken again (85.0-95.0 min after exercise), 4 sets MR scans were taken (96.5 to 116.0 min after exercise). On days 2 and 7, a single set MR scan (MRE, T2 value, and ADC) was taken on each experimental day. The data were analyzed as relative changes (%) of the given parameters to the pre-exercise values. The results indicated significant decreases in PM shear modulus up to about 30 min after exercise. Then, it gradually increased and showed significant increases at about 100 min after exercise compared to that before exercise. T2 values and ADC showed significant increases up to about 65 min after exercise compared to those before exercise, and then returned to the pre-exercise values. On days 2 and 7, all values showed no significant changes compared to the pre-exercise values. This study is the first to report the time-course of the physical properties of the PM after exercise.


Assuntos
Técnicas de Imagem por Elasticidade , Imagem de Difusão por Ressonância Magnética , Técnicas de Imagem por Elasticidade/métodos , Exercício Físico/fisiologia , Humanos , Extremidade Inferior , Imageamento por Ressonância Magnética/métodos , Masculino , Músculo Esquelético/fisiologia , Músculos Psoas/diagnóstico por imagem , Músculos Psoas/fisiologia
2.
Magn Reson Imaging ; 85: 133-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687851

RESUMO

This study aims to develop and assess a new automated processing technique in MR elastography (MRE), namely coherent-wave auto-selection (CHASE). CHASE enables automatic selection of the region of interest (ROI) for stiffness measurement by extraction of the coherent wave region (CHASE ROI), and it improves the reconstruction of stiffness by a directional filter oriented along the main wave in each pixel (CHASE filtering). In this study, MRE of a phantom and of the liver of four healthy volunteers was performed. To investigate the potential of CHASE, this study assessed the CHASE according to three indices through the phantom study: 1) agreement on the ROI settings between CHASE and expert observers, 2) noise dependency, and 3) effect of the CHASE on stiffness variability within the CHASE ROI. The agreements on the ROI settings were analyzed by Cohen's kappa coefficient (κ). The noise dependency was analyzed by the mean absolute percentage errors (MAPEs) within the ROI between low (20%-80% amplitudes) and high vibration amplitudes (100% amplitude). The stiffness variability was assessed by standard deviation (SD) within the ROI. In the volunteer study, agreements on the ROI settings (or stiffness value) and stiffness variability within the CHASE ROI were assessed using κ-value (or intraclass correlation coefficient: ICC) and coefficient of variation, respectively. The results showed close agreement on the ROI settings and stiffness (κ-value: greater than 0.61 in both the phantom and volunteer studies, ICC: 0.97 in the volunteer study). The MAPEs within the CHASE ROI were much smaller than those in the whole region of the phantom (CHASE ROI vs. the whole region at 20% amplitude: 10.3% vs. 50.8%). Moreover, in both the phantom and volunteer studies, the stiffness variation within the CHASE ROI was smaller in the elastogram processed with CHASE filtering than in the unprocessed one. Our results demonstrated that the CHASE has high robustness against noise and the potential to provide ROI settings for stiffness measurement comparable to expert observers, as well as improve the reconstruction of stiffness.


Assuntos
Técnicas de Imagem por Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Voluntários Saudáveis , Humanos , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos Testes
3.
Magn Reson Imaging ; 71: 27-36, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32325234

RESUMO

The purpose of this study was to determine an optimal condition (vibration frequency and image filtering) for stiffness estimation with high accuracy and stiffness measurement with high repeatability in magnetic resonance elastography (MRE) of the supraspinatus muscle. Nine healthy volunteers underwent two MRE exams separated by at least a 30 min break, on the same day. MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 75, 100, and 125 Hz pneumatic vibration. Wave images were processed by a bandpass filter or filter combining bandpass and directional filters (bandpass-directional filter). An observer specified the region of interest (ROI) on clear wave propagation in the supraspinatus muscle, within which the observer measured the stiffness. This study assessed wave image quality according to two indices, as a substitute for the assessment of the accuracy of the stiffness estimation. One is the size of the clear wave propagation area (ROI size used to measure the stiffness) and the other is the qualitative stiffness resolution score in that area. These measurements made by the observer were repeated twice at least one month apart after each MRE exam. This study assessed the intra-examiner and observer repeatability of the stiffness value, ROI size and resolution score in each combination of vibration frequency and image filter. Repeatability of the data was analyzed using the intraclass correlation coefficient (ICC) and 95% limits-of-agreement (LOA) in Bland-Altman analysis. The analyses on intra-examiner and observer repeatability of stiffness indicated that the ICC and 95% LOA were not varied greatly depending on vibration frequency and image filter (intra-examiner repeatability, ICC range, 0.79 to 0.88; 95% LOA range, ±23.95 to ±32.42%, intra-observer repeatability, ICC range, 0.98 to 1.00; 95% LOA range, ±5.10 to ±10.99%). In the analyses on intra-examiner repeatability of ROI size, ICCs were rather low (ranging from: 0.03 to 0.69) while 95% LOA was large in all the combinations of vibration frequency and image filter (ranging from: ±62.66 to ±83.33%). In the analyses on intra-observer repeatability of ROI size, ICCs were sufficiently high in the total combination of vibration frequency and image filter (ranging from 0.80 to 0.87) while the 95% LOAs were better (lower) in the bandpass-directional filter than the bandpass filter (bandpass directional filter vs. bandpass filter, ±28.81 vs. ±54.83% at 75 Hz; ±25.63 vs. ±37.83% at 100 Hz; ±34.51 vs. ±43.36% at 125 Hz). In the analyses on intra-examiner and observer repeatability of resolution score, the mean difference (bias) between the two exams (or observations) was significantly low and there was almost no difference across all the combinations of vibration frequency and image filter (range of bias: -0.11-0.11 and -0.17-0.00, respectively). Additionally, effects of vibration frequency and image filter on wave image quality (ROI size and resolution score) were assessed separately in each exam. Both mean ROI size and resolution score in the bandpass-directional filter were larger than those in the bandpass filter. Among the data in the bandpass-directional filter, mean ROI size was larger at 75 and 100 Hz, and mean resolution score was larger at 100 and 125 Hz. Taking into consideration with the results of repeatability and wave image quality, the present results suggest that optimal vibration frequency and image filter for MRE of the supraspinatus muscles is 100 Hz and bandpass-directional filter, respectively.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Músculos/diagnóstico por imagem , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Manguito Rotador/diagnóstico por imagem , Vibração
4.
Magn Reson Imaging ; 63: 85-92, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425804

RESUMO

The present study aimed to develop vibration techniques for magnetic resonance (MR) elastography (MRE) of the psoas major muscle (PM). Seven healthy volunteers were included. MRE was performed with motion-encoding gradient (MEG)-less multi-echo MRE sequence, which allows clinicians to perform MRE using conventional MR imaging. In order to transmit mechanical vibration of the pneumatic type to the PM, a long narrow vibration pad was designed using a 3D printer, and the optimum vibration techniques were verified. The vibration pad was placed under the lower back, with the volunteers in the supine position. The results indicated that the PM vibrated well through the transmitted vibration from the lumbar spine, which suggests that the placement of a narrow vibration pad under the supine body, along the lumbar spine, allows the vibration of the PM. The shear modulus of the PM (n = 7) was 1.23 ±â€¯0.09 kPa (mean ±â€¯SEM) on the right side and 1.22 ±â€¯0.15 kPa on the left side, with no significant difference (t-test, P > 0.05). Increased stiffness of the muscle due to continuous local contraction may be an important cause of non-specific low back pain (LBP). The present vibration techniques for MRE of the PM provide a quantitative diagnostic tool for changes in muscle stiffness associated with non-specific LBP.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Dor Lombar/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Contração Muscular/fisiologia , Músculos Psoas/diagnóstico por imagem , Vibração , Adulto , Técnicas de Imagem por Elasticidade/instrumentação , Voluntários Saudáveis , Humanos , Dor Lombar/fisiopatologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiopatologia , Imageamento por Ressonância Magnética/instrumentação , Masculino , Impressão Tridimensional/instrumentação , Músculos Psoas/fisiologia , Adulto Jovem
5.
Artigo em Japonês | MEDLINE | ID: mdl-30890671

RESUMO

The purpose of this study was to investigate an influence of vibration waveform on magnetic resonance elastography (MRE). MRE is an innovative imaging technique for the non-invasive quantification of the elasticity of soft tissues through the direct visualization of propagating shear waves in vivo using a special phase-contrast magnetic resonance imaging sequence. Since the elasticity of soft tissue calculates from the wavelength of propagating shear waves, it is necessary to propagate sine-wave-shape shear wave at the target soft tissue. However, due to the various factors; i.e. overload of vibration generator, poor contact between imaging object and vibration pad, etc.; it may be difficult to generate a simple sine wave. This work was focused on change vibration waveforms; i.e. square wave, triangle wave, saw-tooth wave; which is induced by the various factors. Phantom experimental results demonstrated that when square and saw-tooth waveforms of 25 Hz vibration frequency, into the phantom, the waveform of propagating wave was not similar to sine waveform. It may influence on the MRE that in case of the waveforms has low frequency and square or saw-tooth like waveforms.


Assuntos
Técnicas de Imagem por Elasticidade , Imageamento por Ressonância Magnética , Vibração , Elasticidade , Imagens de Fantasmas
6.
Magn Reson Imaging ; 57: 95-102, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30465866

RESUMO

We developed a Magnetic Resonance elastography (MRE) technique using a conventional magnetic resonance imaging (MRI), which allows a simultaneous elastography of the supraspinatus and trapezius muscles, by designing a new wave transducer (vibration pad) and optimizing the mechanical vibration frequency. Five healthy volunteers underwent an MRE. In order to transmit the mechanical vibration (pneumatic vibration) to the supraspinatus and trapezius muscles, a new vibration pad was designed using a three-dimensional (3D) printer. The vibration pad was placed on the skin 2 cm medial and 2 cm cephalad the deltoid tubercle. MRE acquisition was performed with a multi-slice gradient-echo type multi-echo MR sequence, which allows MREs even in a conventional MRI; two oblique axial images of the supraspinatus and trapezius muscles were obtained simultaneously. Vibration frequencies were set at 50-150 Hz, with a 25 Hz step. Wave image quality in each frequency was analyzed using a phase-to-noise ratio (PNR) and clarity of propagating wave that was assessed by two readers qualitatively. In the supraspinatus muscle, the wave images were of good quality especially at frequencies >75 Hz. In the trapezius muscle, the wave images were of better quality at low frequencies (50 and 75 Hz) compared with high frequencies (100-150 Hz). The PNR of both muscles were higher at low frequencies. The mean stiffness in the trapezius muscle (7.26 ±â€¯2.13 kPa at 75 Hz) was larger than those in the supraspinatus muscle (4.16 ±â€¯0.50 kPa at 75 Hz). The results demonstrated that our MRE technique allows simultaneous assessment of the stiffness in the supraspinatus and trapezius muscles using a conventional MRI, and that optimal vibration frequency for simultaneous MRE of these muscles is 75 Hz. This technique provides a new means for early detection of abnormality in the shoulder.


Assuntos
Técnicas de Imagem por Elasticidade , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Músculos Superficiais do Dorso/diagnóstico por imagem , Adulto , Voluntários Saudáveis , Humanos , Masculino , Movimento (Física) , Impressão Tridimensional , Manguito Rotador/diagnóstico por imagem , Ombro , Razão Sinal-Ruído , Vibração , Adulto Jovem
7.
Magn Reson Imaging ; 54: 160-170, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171999

RESUMO

Diffusion-magnetic resonance elastography (dMRE) is an emerging practical technique that can acquire diffusion magnetic resonance imaging and MRE simultaneously. However, a signal loss attributable to intravoxel phase dispersion (IVPD) interferes with the calculation of the apparent diffusion coefficient (ADC). This study presents an approach to dMRE that reduces the influence of IVPD by introducing a new pulse sequence. The existing and proposed techniques were performed using a phantom comprising five rods with different elasticities at 60 Hz vibration to investigate the accuracy of previous and proposed dMRE techniques. The measures of ADC and stiffness, obtained by using both dMRE techniques, were compared with conventional spin-echo (SE) diffusion and SE-MRE. Then, we evaluated those differences by using the mean of absolute differences (MAD) in each rod within the phantom. The results of the MAD of the stiffness from both dMRE techniques showed almost no difference. In contrast, the value of the ADC MAD (MAD ≒ 0.16 × 10-3 mm2/s), obtained in the soft region within the phantom with the previous dMRE technique, was large. This value was about 2.7 times that of the value produced by the proposed dMRE technique. This difference must reflect the degree of influence of IVPD in both techniques. These results demonstrate that our dMRE technique is a robust method for addressing the signal loss attributable to IVPD.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Técnicas de Imagem por Elasticidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Estresse Mecânico
8.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 72(12): 1222-1229, 2016.
Artigo em Japonês | MEDLINE | ID: mdl-28003609

RESUMO

Palpation is a standard clinical tool to diagnose abnormal stiffness changes in soft tissues. However, it is difficult to palpate the supraspinatus muscle because it locates under the trapezius muscle. The magnetic resonance elastography (MRE) uses harmonic mechanical excitation to quantitatively measure the stiffness (shear modulus) of both the superficial and deep tissues. The purpose of this study was to build a vibration system for applying the MRE to the supraspinatus muscle. In this study, a power amplifier and a pneumatic pressure generator were used to supply vibrations to a vibration pad. Six healthy volunteers underwent MRE. We investigated the effects of position (the head of the humerus and the trapezius muscle) of the vibration pad on the patterns of wave propagation (wave image). When the vibration pad was placed in the trapezius muscle, the wave images represented clear wave propagation. On the other hand, when the vibration pad was placed in the head of the humerus, the wave images represented unclear wave propagation. This result might be caused by wave interferences resulting from the vibrations from bones and an intramuscular tendon of the supraspinatus muscle. The mean shear modulus also was 8.12 ± 1.83 (mean ± SD) kPa, when the vibration pad was placed in the trapezius muscle. Our results demonstrated that the vibration pad should be placed in the trapezius muscle in the MRE of the supraspinatus muscle.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Manguito Rotador/diagnóstico por imagem , Adulto , Braço , Feminino , Humanos , Masculino , Manguito Rotador/fisiologia , Vibração , Adulto Jovem
9.
Magn Reson Imaging ; 34(8): 1181-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27374984

RESUMO

Magnetic resonance elastography (MRE) can measure tissue stiffness quantitatively and noninvasively. Supraspinatus muscle injury is a significant problem among throwing athletes. The purpose of this study was to develop an MRE technique for application to the supraspinatus muscle by using a conventional magnetic resonance imaging (MRI). MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 100Hz pneumatic vibration. A custom-designed vibration pad was used as a pneumatic transducer in order to adapt to individual shoulder shapes. In a gradient-echo type multi-echo MR sequence, without motion encoding gradient (MEG) that synchronizes with vibrations, bipolar readout gradient lobes achieved a similar function to MEG (MEG-like effect). In other words, a dedicated MRE sequence (built-in MEG) is not always necessary for MRE. In this study, 7 healthy volunteers underwent MRE. We investigated the effects of direction of the MEG-like effect and selected imaging planes on the patterns of wave propagation (wave image). The results indicated that wave images showed clear wave propagation on a condition that the direction of the MEG-like effect was nearly perpendicular to the long axis of the supraspinatus muscle, and that the imaging plane was superior to the proximal supraspinatus muscle. This limited condition might be ascribed to specific features of fibers in the supraspinatus muscle and wave reflection from the boundaries of the supraspinous fossa. The mean stiffness of the supraspinatus muscle was 10.6±3.17kPa. Our results demonstrated that using MRE, our method can be applied to the supraspinatus muscle by using conventional MRI.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Manguito Rotador/diagnóstico por imagem , Adulto , Voluntários Saudáveis , Humanos , Masculino , Valores de Referência , Adulto Jovem
10.
Magn Reson Imaging ; 33(1): 31-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25311570

RESUMO

To demonstrate the feasibility of a novel MR elastography (MRE) technique based on a conventional gradient-echo type multi-echo MR sequence which does not need additional bipolar magnetic field gradients (motion encoding gradient: MEG), yet is sensitive to vibration. In a gradient-echo type multi-echo MR sequence, several images are produced from each echo of the train with different echo times (TEs). If these echoes are synchronized with the vibration, each readout's gradient lobes achieve a MEG-like effect, and the later generated echo causes a greater MEG-like effect. The sequence was tested for the tissue-mimicking agarose gel phantoms and the psoas major muscles of healthy volunteers. It was confirmed that the readout gradient lobes caused an MEG-like effect and the later TE images had higher sensitivity to vibrations. The magnitude image of later generated echo suffered the T2 decay and the susceptibility artifacts, but the wave image and elastogram of later generated echo were unaffected by these effects. In in vivo experiments, this method was able to measure the mean shear modulus of the psoas major muscle. From the results of phantom experiments and volunteer studies, it was shown that this method has clinical application potential.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Músculo Esquelético/patologia , Artefatos , Voluntários Saudáveis , Humanos , Campos Magnéticos , Masculino , Movimento (Física) , Imagens de Fantasmas , Sefarose/química , Resistência ao Cisalhamento , Adulto Jovem
11.
Magn Reson Imaging ; 31(6): 939-46, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23602728

RESUMO

The purpose of this study was to develop a new technique for a powerful compact MR elastography (MRE) actuator based on a pneumatic ball-vibrator. This is a compact actuator that generates powerful centrifugal force vibrations via high speed revolutions of an internal ball using compressed air. This equipment is easy to handle due to its simple principles and structure. Vibration frequency and centrifugal force are freely adjustable via air pressure changes (air flow volume), and replacement of the internal ball. In order to achieve MRI compatibility, all parts were constructed from non-ferromagnetic materials. Vibration amplitudes (displacements) were measured optically by a laser displacement sensor. From a bench test of displacement, even though the vibration frequency increased, the amount of displacement did not decrease. An essential step in MRE is the generation of mechanical waves within tissue via an actuator, and MRE sequences are synchronized to several phase offsets of vibration. In this system, the phase offset was detected by a four-channel optical-fiber sensor, and it was used as an MRI trigger signal. In an agarose gel phantom experiment, this actuator was used to make an MR elastogram. This study shows that the use of a ball actuator for MRE is feasible.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Aumento da Imagem/instrumentação , Palpação/instrumentação , Estimulação Física/instrumentação , Ar , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA