Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Endod ; 50(2): 243-251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37918795

RESUMO

INTRODUCTION: A 65-year-old man had nonsurgical retreatment using an iodoform and calcium hydroxide paste in a maxillary left canine with persistent apical periodontitis. An apical mineralized barrier (AMB) was observed 3-months postoperatively. Unfortunately, the tooth was extracted due to a cementum tear. This provided an opportunity to analyze the AMB histologically, as there is a lack of previous reports on its microstructure. METHODS: After extraction and removal of the granulation tissue from the root surface, the canine was processed, and observed using micro-computed tomography (µCT) and light microscopy. Thereafter, the specimen was resin-embedded specimen was evaluated by scanning electron microscopy, micro-X-ray fluorescence spectroscopy and Raman spectroscopy to understand the mechanism and nature of the AMB formation during apical healing. RESULTS: Nonsurgical retreatment was clinically successful based on the absence of clinical symptoms of apical periodontitis and the radiographic presence of an AMB. The AMB was opaque and could be readily differentiated from dentin under a light microscope. Micro-computed tomography analysis revealed that the AMB had the same mineral density as dentin. Scanning electron microscopy revealed that the AMB had two distinct layers based on the size of the calcified particles. Elemental mapping using micro-X-ray fluorescence spectroscopy showed that the localization of calcium and phosphorus differed between AMB and other areas of biomineralization. Raman spectral mapping revealed that the surface layer of the AMB consisted of collagen, calcium carbonate, and hydroxyapatite. CONCLUSIONS: This study explored new analytical methods for elucidating the apical wound-healing process and the nature of the mineralized repair. The findings provided detailed information on the AMB highlighting a bilaminar structure with high calcium components higher on the inside and a brightness similar to cementum not dentin and the presence of hydroxyapatite.


Assuntos
Hidróxido de Cálcio , Hidrocarbonetos Iodados , Periodontite Periapical , Masculino , Humanos , Idoso , Hidróxido de Cálcio/uso terapêutico , Hidróxido de Cálcio/química , Cálcio , Microtomografia por Raio-X , Hidroxiapatitas
2.
Pharmaceutics ; 14(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36297473

RESUMO

Gutta-percha points and root canal sealers have been used for decades in endodontics for root canal obturation. With techniques such as single cone methods, the amount of sealer is larger, making their properties more critical. However, relatively few reports have comprehensively evaluated their biological effects. To this end, we evaluated three types of sealers, zinc oxide-fatty acid-, bio-glass- and methacrylate resin-containing sealers were considered. Their biological effects were evaluated using a rat subcutaneous implantation model. Each sealer was loaded inside a Teflon tube and implanted subcutaneously in the backs of rats. Inflammatory cells were observed around all samples 7 days after implantation and reduced after 28 days. Our results revealed that all samples were in contact with the subcutaneous tissue surrounding the sealer. Additionally, Ca and P accumulation was observed in only the bio-glass-containing sealer. Furthermore, each of the three sealers exhibited unique immune and inflammatory modulatory effects. In particular, bio-glass and methacrylate resin sealers were found to induce variable gene expression in adjacent subcutaneous tissues related to angiogenesis, wound healing, muscle tissue, and surrounding subcutaneous tissue. These results may help to understand the biological impacts of root canal sealers on surrounding biological tissues, guiding future research and comparisons with new generations of materials.

3.
J Clin Med ; 8(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514356

RESUMO

The induction of tissue mineralization and the mechanism by which surface pre-reacted glass-ionomer (S-PRG) cement influences pulpal healing remain unclear. We evaluated S-PRG cement-induced tertiary dentin formation in vivo, and its effect on the pulp cell healing process in vitro. Induced tertiary dentin formation was evaluated with micro-computed tomography (µCT) and scanning electron microscopy (SEM). The distribution of elements from the S-PRG cement in pulpal tissue was confirmed by micro-X-ray fluorescence (µXRF). The effects of S-PRG cement on cytotoxicity, proliferation, formation of mineralized nodules, and gene expression in human dental pulp stem cells (hDPSCs) were assessed in vitro. µCT and SEM revealed that S-PRG induced tertiary dentin formation with similar characteristics to that induced by hydraulic calcium-silicate cement (ProRoot mineral trioxide aggregate (MTA)). µXRF showed Sr and Si ion transfer into pulpal tissue from S-PRG cement. Notably, S-PRG cement and MTA showed similar biocompatibility. A co-culture of hDPSCs and S-PRG discs promoted mineralized nodule formation on surrounding cells. Additionally, S-PRG cement regulated the expression of genes related to osteo/dentinogenic differentiation. MTA and S-PRG regulated gene expression in hDPSCs, but the patterns of regulation differed. S-PRG cement upregulated CXCL-12 and TGF-ß1 gene expression. These findings showed that S-PRG and MTA exhibit similar effects on dental pulp through different mechanisms.

4.
J Radiol Prot ; 38(4): 1384-1392, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30246689

RESUMO

In radiation emergency situations involving persons having plutonium (Pu)-contaminated wounds, rapid assessment of the degree of Pu contamination is required to determine the appropriate course of treatment. Currently, rapid on-site detection of Pu is usually performed by analysis of α-particles emitted from the adhesive tape peeled off the wound. However, the detection of α-particles is difficult, especially in traumatic skin lesions with oozing blood, because of the low permeability of α-particles in blood. Therefore, we focused on x-ray fluorescence (XRF) analysis because x-rays easily pass through several millimetres of blood. In this study, we developed a new methodology for the rapid detection of heavy elements in wounds based on XRF analysis of the contaminated blood collected by gauze patch and filter paper, using stable lead (Pb) as a model contaminant substitute for Pu. Mouse blood samples contaminated with Pb were dropped on gauze patches or absorbed by filter papers and were subjected to XRF measurement. Small pieces of filter paper served as more suitable extraction materials than gauze patches because the entire amount of blood absorbed could be measured. When we used filter paper, the signal intensity of the Pb Lα peak was proportional to the Pb concentration in the blood. With a measurement time of 30 s, the minimum detection limit of Pb in blood collected by filter paper was 2.4 ppm.


Assuntos
Análise Química do Sangue/métodos , Plutônio/sangue , Ferimentos e Lesões/sangue , Animais , Fluorescência , Camundongos , Radiografia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA