Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569679

RESUMO

Gastric cancer with peritoneal dissemination is difficult to treat surgically, and frequently recurs and metastasizes. Currently, there is no effective treatment for this disease, and there is an urgent need to elucidate the molecular mechanisms underlying peritoneal dissemination and metastasis. Our previous study demonstrated that galectin-4 participates in the peritoneal dissemination of poorly differentiated gastric cancer cells. In this study, the glycan profiles of cell surface proteins and glycosphingolipids (GSLs) of the original (wild), galectin-4 knockout (KO), and rescue cells were investigated to understand the precise mechanisms involved in the galectin-4-mediated regulation of associated molecules, especially with respect to glycosylation. Glycan analysis of the NUGC4 wild type and galectin-4 KO clones with and without peritoneal metastasis revealed a marked structural change in the glycans of neutral GSLs, but not in N-glycan. Furthermore, mass spectrometry (MS) combined with glycosidase digestion revealed that this structural change was due to the presence of the lacto-type (ß1-3Galactosyl) glycan of GSL, in addition to the neolacto-type (ß1-4Galactosyl) glycan of GSL. Our results demonstrate that galectin-4 is an important regulator of glycosylation in cancer cells and galectin-4 expression affects the glycan profile of GSLs in malignant cancer cells with a high potential for peritoneal dissemination.


Assuntos
Galectina 4 , Neoplasias Gástricas , Humanos , Galectina 4/genética , Glicoesfingolipídeos/metabolismo , Recidiva Local de Neoplasia , Polissacarídeos/metabolismo
2.
Polymers (Basel) ; 14(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267770

RESUMO

The mechanical properties of continuous fiber-reinforced thermoplastic (C-FRTP) composites are commonly lower than those of continuous fiber-reinforced thermosetting plastic (C-FRP) composites. We have developed a new molding method for C-FRTP. In this study, pre-impregnated materials were successfully prepared by polymer solution impregnation method and, finally, C-FRTP was fabricated. The viscosity of the thermoplastic matrix was decreased to approximately 3dPa×s, the same level of epoxy, and the fiber volume fraction was increased from approximately 45 to 60%. The cross-section of specimens were polished by an ion milling system and impregnation condition was investigated by scanning electron microscopy (SEM). The micrographs suggested that thermoplastic polymer was impregnated to every corner of the fiber, and no void was found on the cross-section. It revealed that void-free composites with perfect mechanical properties can be manufactured with this new molding method. All specimens were submitted to a mechanical measuring equipment, and the mechanical properties of the composite specimens were investigated. Mechanical analysis revealed that tensile property and flexural property of C-FRTP were enhanced up to the same level with C-FRP.

3.
Carbohydr Res ; 511: 108495, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35026558

RESUMO

Mucin-type O-glycosylation of serine or threonine residue in proteins is known to be one of the major post-translational modifications. In this study, two novel alkyl glycosides, Nα-lauryl-O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-l-serineamide (GalNAc-Ser-C12) and Nα-lauryl-O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-l-threonineamide (GalNAc-Thr-C12) were synthesized as saccharide primers to prime mucin-type O-glycan biosynthesis in cells. Upon incubating human gastric cancer MKN45 cells with the saccharide primers, 22 glycosylated products were obtained, and their structures were analyzed using liquid chromatography-mass spectrometry and enzyme digestion. The amounts of glycosylated products were dependent on the amino acid residues in the saccharide primers. For example, in vitro synthesis of T antigen (Galß1-3GalNAc), fucosyl-T (Fucα1-2Galß1-3GalNAc), and sialyl-T (NeuAcα2-3Galß1-3GalNAc) preferred a serine residue, whereas sialyl-Tn (NeuAcα2-6GalNAc) preferred a threonine residue. Furthermore, the glycosylated products derived from GalNAc-Ser/Thr-C12 and Gal-GalNAc-Ser/Thr-C12 using cell-free synthesis showed the same amino acid selectivity as those in the cell experiments. These results indicate that glycosyltransferases involved in the biosynthesis of mucin-type O-glycans distinguish amino acid residues conjugated to GalNAc. The saccharide primers developed in this study might be useful for comparing mucin-type oligosaccharides in cells and constructing oligosaccharide libraries to study cell function.


Assuntos
Mucinas , Treonina , Glicosilação , Humanos , Mucinas/química , Oligossacarídeos/química , Polissacarídeos/química , Treonina/química
4.
ACS Appl Mater Interfaces ; 14(1): 1034-1044, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935337

RESUMO

Solar interfacial evaporation is an emerging technology in solar energy harvesting developed to remedy the global energy crisis and the lack of freshwater resources. However, developing fully enhanced thermal management to optimize solar-heat utilization efficiency and form remains a great challenge. We created a synergistic photothermal layer from a poly(N-phenylglycine) (PNPG)/MoS2 nanohybrid via electrostatic-induced self-assembly for a broad-spectrum and efficient solar absorption. The PNPG/MoS2 system provided effective synergistic photothermal conversion and good water transmission, enabling rapid solar steam escape. Notably, synergistic coupling of solar evaporation-thermoelectric (TE) power generation was also achieved, providing more efficient exploitation of solar heat. The system demonstrated a solar evaporation rate of up to 1.70 kg m-2 h-1 and achieved a maximum thermoelectric output power with 0.23 W m-2 under one sun. The high-performance PNPG/MoS2 synergistic photothermal system developed in this study offers potential opportunities for coupling solar water purification with thermoelectric power generation to meet the needs of resource-scarce areas.

5.
Glycobiology ; 31(10): 1401-1414, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34192331

RESUMO

Immunoglobulin G (IgG) has a conserved N-glycosylation site at Asn297 in the fragment crystallizable (Fc) region. Previous studies have shown that N-glycosylation of this site is a critical mediator of the antibody's effector functions, such as antibody-dependent cellular cytotoxicity. While the N-glycan structures attached to the IgG-Fc region are generally heterogenous, IgGs engineered to be homogenously glycosylated with functional N-glycans may improve the efficacy of antibodies. The major glycoforms of the N-glycans on the IgG-Fc region are bi-antennary complex-type N-glycans, while multibranched complex-type N-glycans are not typically found. However, IgGs with tri-antennary complex-type N-glycans have been generated using the N-glycan remodeling technique, suggesting that more branched N-glycans might be artificially attached. At present, little is known about the properties of these IgGs. In this study, IgGs with multibranched N-glycans on the Fc region were prepared by using a combination of the glycosynthase/oxazoline substrate-based N-glycan remodeling technique and successive reactions with glycosyltransferases. Among the IgGs produced by these methods, the largest N-glycan attached was a bisecting N-acetylglucosamine containing a sialylated penta-antennary structure. Concerning the Fc-mediated effector functions, the majority of IgGs with tri- and tetra-antennary N-glycans on their Fc region showed properties similar to IgGs with ordinary bi-antennary N-glycans.


Assuntos
Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Polissacarídeos/imunologia , Receptor ErbB-2/imunologia , Acetilglucosamina/imunologia , Humanos
6.
Genes Cells ; 26(7): 485-494, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33893702

RESUMO

Defects in the O-mannosyl glycan of α-dystroglycan (α-DG) are associated with α-dystroglycanopathy, a group of congenital muscular dystrophies. While α-DG has many O-mannosylation sites, only the specific positions can be modified with the functional O-mannosyl glycan, namely, core M3-type glycan. POMGNT2 is a glycosyltransferase which adds ß1,4-linked GlcNAc to the O-mannose (Man) residue to acquire core M3-type glycan. Although it is assumed that POMGNT2 extends the specific O-Man residues around particular amino acid sequences, the details are not well understood. Here, we determined a series of crystal structures of POMGNT2 with and without the acceptor O-mannosyl peptides and identified the critical interactions between POMGNT2 and the acceptor peptide. POMGNT2 has an N-terminal catalytic domain and a C-terminal fibronectin type III (FnIII) domain and forms a dimer. The acceptor peptide is sandwiched between the two protomers. The catalytic domain of one protomer recognizes the O-mannosylation site (TPT motif), and the FnIII domain of the other protomer recognizes the C-terminal region of the peptide. Structure-based mutational studies confirmed that amino acid residues of the catalytic domain interacting with mannose or the TPT motif are essential for POMGNT2 enzymatic activity. In addition, the FnIII domain is also essential for the activity and it interacts with the peptide mainly by hydrophobic interaction. Our study provides the first atomic-resolution insights into specific acceptor recognition by the FnIII domain of POMGNT2. The catalytic mechanism of POMGNT2 is proposed based on the structure.


Assuntos
Domínio Catalítico , Glicosiltransferases/química , Distroglicanas/metabolismo , Glicosiltransferases/metabolismo , Humanos , Manose/metabolismo , Ligação Proteica
7.
Glycobiology ; 30(11): 923-934, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32337602

RESUMO

Endo-ß-N-acetylglucosaminidases are enzymes that hydrolyze the N,N'-diacetylchitobiose unit of N-glycans. Many endo-ß-N-acetylglucosaminidases also exhibit transglycosylation activity, which corresponds to the reverse of the hydrolysis reaction. Because of these activities, some of these enzymes have recently been used as powerful tools for glycan remodeling of glycoproteins. Although many endo-ß-N-acetylglucosaminidases have been identified and characterized to date, there are few enzymes that exhibit hydrolysis activity toward multibranched (tetra-antennary or more) complex-type N-glycans on glycoproteins. Therefore, we searched for novel endo-ß-N-acetylglucosaminidases that exhibit hydrolysis activity toward multibranched complex-type N-glycans in this study. From database searches, we selected three candidate enzymes from Tannerella species-Endo-Tsp1006, Endo-Tsp1263 and Endo-Tsp1457-and prepared them as recombinant proteins. We analyzed the hydrolysis activity of these enzymes toward N-glycans on glycoproteins and found that Endo-Tsp1006 and Endo-Tsp1263 exhibited hydrolysis activity toward complex-type N-glycans, including multibranched N-glycans, preferentially, whereas Endo-Tsp1457 exhibited hydrolysis activity toward high-mannose-type N-glycans exclusively. We further analyzed substrate specificities of Endo-Tsp1006 and Endo-Tsp1263 using 18 defined glycopeptides as substrates, each having a different N-glycan structure. We found that Endo-Tsp1006 preferred N-glycans with galactose or α2,6-linked sialic acid residues in their nonreducing ends as substrates, whereas Endo-Tsp1263 preferred N-glycans with N-acetylglucosamine residues in their nonreducing ends as substrates.


Assuntos
Acetilglucosaminidase/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Tannerella/enzimologia , Acetilglucosaminidase/química , Glicoproteínas/química , Hidrólise , Polissacarídeos/química , Especificidade da Espécie
8.
Carbohydr Res ; 491: 107981, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32217362

RESUMO

O-Glycopeptides derived from natural bioresources are an attractive material for a variety of purposes. Whey protein products are used as a human dietary supplement and in animal feed and are a readily available resource for the preparation of O-glycopeptides. The protein composition of bovine milk is well-studied, and many glycoproteins carrying N-glycans and O-glycans have been found in commercial whey protein products. In particular, κ-casein glycomacropeptide and lactophorin, which have several O-glycans, are known to exist in whey protein. Here, we report an isolation method of O-glycopeptides bearing disialyl core 1 type and core 2 type glycan moieties from commercially available whey protein products using proteose peptone extraction, enzymatic digestion (with trypsin or thermolysin), and sequential high-performance liquid chromatography purification. We were able to isolate several kinds of O-glycopeptides from lactophorin and κ-casein: six peptide sequences and five kinds of O-glycans. The O-glycopeptides were detected and identified by flow injection analysis combined with electrospray ionization mass spectrometry and tandem mass spectrometry using collision-induced dissociation and electron transfer dissociation. O-Glycopeptides bearing a variety of O-glycans could be used as a substrate for endo-α-N-acetyl galactosaminidase, and their various O-glycan structures were useful for the investigation of enzyme activities.


Assuntos
Glicopeptídeos/síntese química , Proteínas do Soro do Leite/química , Animais , Bovinos , Cromatografia Líquida , Glicopeptídeos/química , Espectrometria de Massas
9.
Nat Commun ; 11(1): 303, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949166

RESUMO

α-Dystroglycan (α-DG) is a highly-glycosylated surface membrane protein. Defects in the O-mannosyl glycan of α-DG cause dystroglycanopathy, a group of congenital muscular dystrophies. The core M3 O-mannosyl glycan contains tandem ribitol-phosphate (RboP), a characteristic feature first found in mammals. Fukutin and fukutin-related protein (FKRP), whose mutated genes underlie dystroglycanopathy, sequentially transfer RboP from cytidine diphosphate-ribitol (CDP-Rbo) to form a tandem RboP unit in the core M3 glycan. Here, we report a series of crystal structures of FKRP with and without donor (CDP-Rbo) and/or acceptor [RboP-(phospho-)core M3 peptide] substrates. FKRP has N-terminal stem and C-terminal catalytic domains, and forms a tetramer both in crystal and in solution. In the acceptor complex, the phosphate group of RboP is recognized by the catalytic domain of one subunit, and a phosphate group on O-mannose is recognized by the stem domain of another subunit. Structure-based functional studies confirmed that the dimeric structure is essential for FKRP enzymatic activity.


Assuntos
Distrofias Musculares/metabolismo , Açúcares de Nucleosídeo Difosfato/química , Açúcares de Nucleosídeo Difosfato/metabolismo , Pentosiltransferases/química , Pentosiltransferases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glicopeptídeos , Células HEK293 , Humanos , Modelos Moleculares , Distrofias Musculares/genética , Pentosiltransferases/genética , Fosfatos/metabolismo , Polissacarídeos/metabolismo , Conformação Proteica , Domínios Proteicos , Ribitol/metabolismo
10.
Bioorg Med Chem ; 26(13): 3763-3772, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30017113

RESUMO

Synthesis of several 1,5-Anhydro-d-fructose (1,5-AF) derivatives to evaluate inhibitory activities of the inflammasome was carried out. Recently, 1,5-AF reported to suppress the inflammasome, although with only low activity. We focused on the hydration of 2-keto form of 1,5-AF and speculated that this hydration was the cause of low activity. Therefore, we synthesized some 1,5-AF derivatives that would not be able to form the dimer conformation and can be expected to have high activity against inflammasome, and then evaluated their inhibitory activities with respect to the NLRP3 inflammasome by using mouse bone marrow-derived macrophages and human THP-1 cells. As a result, some synthesized 2-keto form compounds had much higher inhibitory activities with respect to the NLRP3 inflammasome than did 1,5-AF.


Assuntos
Frutose/análogos & derivados , Inflamassomos/metabolismo , Animais , Células Cultivadas , Frutose/síntese química , Frutose/farmacologia , Humanos , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Relação Estrutura-Atividade
11.
J Biol Chem ; 293(31): 12186-12198, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29884773

RESUMO

α-Dystroglycan (α-DG) is a highly glycosylated cell-surface laminin receptor. Defects in the O-mannosyl glycan of an α-DG with laminin-binding activity can cause α-dystroglycanopathy, a group of congenital muscular dystrophies. In the biosynthetic pathway of functional O-mannosyl glycan, fukutin (FKTN) and fukutin-related protein (FKRP), whose mutated genes underlie α-dystroglycanopathy, sequentially transfer ribitol phosphate (RboP) from CDP-Rbo to form a tandem RboP unit (RboP-RboP) required for the synthesis of the laminin-binding epitope on O-mannosyl glycan. Both RboP- and glycerol phosphate (GroP)-substituted glycoforms have recently been detected in recombinant α-DG. However, it is unclear how GroP is transferred to the O-mannosyl glycan or whether GroP substitution affects the synthesis of the O-mannosyl glycan. Here, we report that, in addition to having RboP transfer activity, FKTN and FKRP can transfer GroP to O-mannosyl glycans by using CDP-glycerol (CDP-Gro) as a donor substrate. Kinetic experiments indicated that CDP-Gro is a less efficient donor substrate for FKTN than is CDP-Rbo. We also show that the GroP-substituted glycoform synthesized by FKTN does not serve as an acceptor substrate for FKRP and that therefore further elongation of the outer glycan chain cannot occur with this glycoform. Finally, CDP-Gro inhibited the RboP transfer activities of both FKTN and FKRP. These results suggest that CDP-Gro inhibits the synthesis of the functional O-mannosyl glycan of α-DG by preventing further elongation of the glycan chain. This is the first report of GroP transferases in mammals.


Assuntos
Distroglicanas/metabolismo , Glicerol/metabolismo , Distrofias Musculares/metabolismo , Polissacarídeos/metabolismo , Glicerol/química , Glicosilação , Humanos , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Distrofias Musculares/genética , Pentosefosfatos/metabolismo , Pentosiltransferases , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
12.
Biochem Biophys Res Commun ; 497(4): 1025-1030, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29477842

RESUMO

Dystroglycanopathies are a group of muscular dystrophies that are caused by abnormal glycosylation of dystroglycan; currently 18 causative genes are known. Functions of the dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and transmembrane protein 5 (TMEM5) were most recently identified; fukutin and FKRP are ribitol-phosphate transferases and TMEM5 is a ribitol xylosyltransferase. In this study, we show that fukutin, FKRP, and TMEM5 form a complex while maintaining each of their enzyme activities. Immunoprecipitation and immunofluorescence experiments demonstrated protein interactions between these 3 proteins. A protein complex consisting of endogenous fukutin and FKRP, and exogenously expressed TMEM5 exerts activities of each enzyme. Our data showed for the first time that endogenous fukutin and FKRP enzyme activities coexist with TMEM5 enzyme activity, and suggest the possibility that formation of this enzyme complex may contribute to specific and prompt biosynthesis of glycans that are required for dystroglycan function.


Assuntos
Proteínas de Membrana/metabolismo , Distrofias Musculares/metabolismo , Proteínas/metabolismo , Distroglicanas , Células HEK293 , Humanos , Complexos Multiproteicos , Pentosiltransferases , Polissacarídeos/biossíntese , Ribitol/metabolismo
13.
Glycoconj J ; 34(5): 591-601, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28577071

RESUMO

To elucidate a biological role of the methylated mannose residues found in N-glycans of terrestrial worm Enchytraeus japonensis, we first synthesized 3-O-methyl mannose- and 4-O-methyl mannose-derivatives and immobilized them to Sepharose 4B beads in order to isolate the sugar-binding protein. When whole protein extracts from the worms was applied to a series of the columns immobilized with the modified and unmodified mannose-derivatives, respectively, a protein with a molecular weight of 25,000 was isolated by 4-O-methyl mannose-immobilized column chromatography, and termed as a methylated mannose-binding protein (mMBP). mMBP bound weakly to a mannose-immobilized column and moderately to a 3-O-methyl mannose-immobilized column. The N-terminal amino acid sequences of mMBP and its endoprotease-digested peptides were determined. Using the degenerate first primers synthesized based on the primary sequence, a genomic DNA fragment was isolated. Then, the second primers were synthesized based on the genomic DNA fragment, and with use of them two cDNA fragments were obtained by the 3'- and 5'-RACE methods. Finally, the third primers were synthesized based on the sequences of the two cDNA fragments and one genomic DNA fragment, and with use of them a full-length cDNA of mMBP was isolated and shown to comprise a putative 633 bp open reading frame encoding 210 amino acid residues. BLAST analysis revealed that mMBP has identities by 26 ~ 55% to several proteins including the regeneration-upregulated protein 3 from the same species. Whether mMBP is involved in the regeneration of the worm is under investigation.


Assuntos
Lectina de Ligação a Manose/genética , Manose/metabolismo , Oligoquetos/genética , Fases de Leitura Aberta , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia de Afinidade/métodos , DNA/genética , DNA/metabolismo , Primers do DNA/síntese química , Primers do DNA/metabolismo , Expressão Gênica , Manose/análogos & derivados , Lectina de Ligação a Manose/isolamento & purificação , Lectina de Ligação a Manose/metabolismo , Metilação , Peso Molecular , Oligoquetos/metabolismo , Reação em Cadeia da Polimerase , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Sefarose/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Genes Cells ; 22(4): 348-359, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28251761

RESUMO

Orchestration of the multiple enzymes engaged in O-mannose glycan synthesis provides a matriglycan on α-dystroglycan (α-DG) which attracts extracellular matrix (ECM) proteins such as laminin. Aberrant O-mannosylation of α-DG leads to severe congenital muscular dystrophies due to detachment of ECM proteins from the basal membrane. Phosphorylation at C6-position of O-mannose catalyzed by protein O-mannosyl kinase (POMK) is a crucial step in the biosynthetic pathway of O-mannose glycan. Several mis-sense mutations of the POMK catalytic domain are known to cause a severe congenital muscular dystrophy, Walker-Warburg syndrome. Due to the low sequence similarity with other typical kinases, structure-activity relationships of this enzyme remain unclear. Here, we report the crystal structures of the POMK catalytic domain in the absence and presence of an ATP analogue and O-mannosylated glycopeptide. The POMK catalytic domain shows a typical protein kinase fold consisting of N- and C-lobes. Mannose residue binds to POMK mainly via the hydroxyl group at C2-position, differentiating from other monosaccharide residues. Intriguingly, the two amino acid residues K92 and D228, interacting with the triphosphate group of ATP, are donated from atypical positions in the primary structure. Mutations in this protein causing muscular dystrophies can now be rationalized.


Assuntos
Proteínas Quinases/química , Animais , Domínio Catalítico , Cristalografia por Raios X , Distroglicanas/química , Humanos , Camundongos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mutação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
15.
Sci Rep ; 6: 39477, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996001

RESUMO

A cytocompatible porous scaffold mimicking the properties of extracellular matrices (ECMs) has great potential in promoting cellular attachment and proliferation for tissue regeneration. A biomimetic scaffold was prepared using silk fibroin (SF)/sodium alginate (SA) in which regular and uniform pore morphology can be formed through a facile freeze-dried method. The scanning electron microscopy (SEM) studies showed the presence of interconnected pores, mostly spread over the entire scaffold with pore diameter around 54~532 µm and porosity 66~94%. With significantly better water stability and high swelling ratios, the blend scaffolds crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) provided sufficient time for the formation of neo-tissue and ECMs during tissue regeneration. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) results confirmed random coil structure and silk I conformation were maintained in the blend scaffolds. What's more, FI-TR spectra demonstrated crosslinking reactions occurred actually among EDC, SF and SA macromolecules, which kept integrity of the scaffolds under physiological environment. The suitable pore structure and improved equilibrium swelling capacity of this scaffold could imitate biochemical cues of natural skin ECMs for guiding spatial organization and proliferation of cells in vitro, indicating its potential candidate material for soft tissue engineering.


Assuntos
Alginatos/química , Materiais Biomiméticos/química , Fibroínas/química , Engenharia Tecidual , Alicerces Teciduais , Animais , Bombyx , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Etildimetilaminopropil Carbodi-Imida/química , Corantes Fluorescentes/química , Liofilização , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Camundongos , Microscopia Eletrônica de Varredura , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química , Difração de Raios X
16.
J Biol Chem ; 291(47): 24618-24627, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27733679

RESUMO

A defect in O-mannosyl glycan is the cause of α-dystroglycanopathy, a group of congenital muscular dystrophies caused by aberrant α-dystroglycan (α-DG) glycosylation. Recently, the entire structure of O-mannosyl glycan, [3GlcAß1-3Xylα1]n-3GlcAß1-4Xyl-Rbo5P-1Rbo5P-3GalNAcß1-3GlcNAcß1-4 (phospho-6)Manα1-, which is required for the binding of α-DG to extracellular matrix ligands, has been proposed. However, the linkage of the first Xyl residue to ribitol 5-phosphate (Rbo5P) is not clear. TMEM5 is a gene product responsible for α-dystroglycanopathy and was reported as a potential enzyme involved in this linkage formation, although the experimental evidence is still incomplete. Here, we report that TMEM5 is a xylosyltransferase that forms the Xylß1-4Rbo5P linkage on O-mannosyl glycan. The anomeric configuration and linkage position of the product (ß1,4 linkage) was determined by NMR analysis. The introduction of two missense mutations in TMEM5 found in α-dystroglycanopathy patients impaired xylosyltransferase activity. Furthermore, the disruption of the TMEM5 gene by CRISPR/Cas9 abrogated the elongation of the (-3GlcAß1-3Xylα1-) unit on O-mannosyl glycan. Based on these results, we concluded that TMEM5 acts as a UDP-d-xylose:ribitol-5-phosphate ß1,4-xylosyltransferase in the biosynthetic pathway of O-mannosyl glycan.


Assuntos
Distroglicanas/metabolismo , Proteínas de Membrana/metabolismo , Distrofias Musculares/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Linhagem Celular , Distroglicanas/química , Distroglicanas/genética , Glicosilação , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Distrofias Musculares/genética , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Pentosiltransferases , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
17.
Proc Natl Acad Sci U S A ; 113(33): 9280-5, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27493216

RESUMO

The dystrophin glycoprotein complex, which connects the cell membrane to the basement membrane, is essential for a variety of biological events, including maintenance of muscle integrity. An O-mannose-type GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man structure of α-dystroglycan (α-DG), a subunit of the complex that is anchored to the cell membrane, interacts directly with laminin in the basement membrane. Reduced glycosylation of α-DG is linked to some types of inherited muscular dystrophy; consistent with this relationship, many disease-related mutations have been detected in genes involved in O-mannosyl glycan synthesis. Defects in protein O-linked mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGnT1), a glycosyltransferase that participates in the formation of GlcNAc-ß1,2-Man glycan, are causally related to muscle-eye-brain disease (MEB), a congenital muscular dystrophy, although the role of POMGnT1 in postphosphoryl modification of GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man glycan remains elusive. Our crystal structures of POMGnT1 agreed with our previous results showing that the catalytic domain recognizes substrate O-mannosylated proteins via hydrophobic interactions with little sequence specificity. Unexpectedly, we found that the stem domain recognizes the ß-linked GlcNAc of O-mannosyl glycan, an enzymatic product of POMGnT1. This interaction may recruit POMGnT1 to a specific site of α-DG to promote GlcNAc-ß1,2-Man clustering and also may recruit other enzymes that interact with POMGnT1, e.g., fukutin, which is required for further modification of the GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man glycan. On the basis of our findings, we propose a mechanism for the deficiency in postphosphoryl modification of the glycan observed in POMGnT1-KO mice and MEB patients.


Assuntos
Distroglicanas/química , N-Acetilglucosaminiltransferases/química , Sítios de Ligação , Cristalização , Glicosilação , Humanos , Manose/química
18.
Cell Rep ; 14(9): 2209-2223, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26923585

RESUMO

Glycosylation is an essential post-translational modification that underlies many biological processes and diseases. α-dystroglycan (α-DG) is a receptor for matrix and synaptic proteins that causes muscular dystrophy and lissencephaly upon its abnormal glycosylation (α-dystroglycanopathies). Here we identify the glycan unit ribitol 5-phosphate (Rbo5P), a phosphoric ester of pentose alcohol, in α-DG. Rbo5P forms a tandem repeat and functions as a scaffold for the formation of the ligand-binding moiety. We show that enzyme activities of three major α-dystroglycanopathy-causing proteins are involved in the synthesis of tandem Rbo5P. Isoprenoid synthase domain-containing (ISPD) is cytidine diphosphate ribitol (CDP-Rbo) synthase. Fukutin and fukutin-related protein are sequentially acting Rbo5P transferases that use CDP-Rbo. Consequently, Rbo5P glycosylation is defective in α-dystroglycanopathy models. Supplementation of CDP-Rbo to ISPD-deficient cells restored α-DG glycosylation. These findings establish the molecular basis of mammalian Rbo5P glycosylation and provide insight into pathogenesis and therapeutic strategies in α-DG-associated diseases.


Assuntos
Proteínas de Membrana/fisiologia , Distrofias Musculares/enzimologia , Pentosefosfatos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/fisiologia , Sequência de Aminoácidos , Configuração de Carboidratos , Sequência de Carboidratos , Glicosilação , Células HEK293 , Humanos , Distrofias Musculares/genética , Mutação , Nucleotidiltransferases/genética , Pentosiltransferases
19.
PLoS One ; 10(7): e0132848, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26200113

RESUMO

Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-ß-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and revealed that the glycoform influenced ADCC activity.


Assuntos
Anticorpos Monoclonais/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Polissacarídeos/química , Trastuzumab/metabolismo , Acetilglucosaminidase/metabolismo , Anticorpos Monoclonais/química , Citotoxicidade Celular Dependente de Anticorpos , Glicosilação , Humanos , Trastuzumab/química
20.
Opt Express ; 23(9): 11312-26, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969226

RESUMO

Topology-optimized designs of multiple-disk resonators are presented using level-set expression that incorporates surface effects. Effects from total internal reflection at the surfaces of the dielectric disks are precisely simulated by modeling clearly defined dielectric boundaries during topology optimization. The electric field intensity in optimal resonators increases to more than four and a half times the initial intensity in a resonant state, whereas in some cases the Q factor increases by three and a half times that for the initial state. Wavelength-scale link structures between neighboring disks improve the performance of the multiple-disk resonators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA